Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Simulated proton image of magnetic fields in a turbulent laser-plasma
Credit: Adapted from Bott et al., "Proton imaging of stochastic magnetic fields". J. Plasma Phys. 83 (2017)

Dr Archie Bott

UKRI Future Leaders Fellow

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
  • Theoretical astrophysics and plasma physics at RPC
archie.bott@physics.ox.ac.uk
  • About
  • Publications

Implementation of a Faraday rotation diagnostic at the OMEGA laser facility

High Power Laser Science and Engineering Cambridge University Press 6:2018 (2018) e49

Authors:

Alexander Rigby, Archie Bott, Thomas White, Petros Tzeferacos, DQ Lamb, DH Froula, Gianluca Gregori

Abstract:

Magnetic field measurements in turbulent plasmas are often difficult to perform. Here we show that for ⩾ kG magnetic fields, a time-resolved Faraday rotation measurement can be made at the OMEGA laser facility. This diagnostic has been implemented using the Thomson scattering probe beam and the resultant path-integrated magnetic field has been compared with that of proton radiography. Accurate measurement of magnetic fields is essential for satisfying the scientific goals of many current laser–plasma experiments.
More details from the publisher
Details from ORA
More details

Transport of high-energy charged particles through spatially-intermittent turbulent magnetic fields

(2018)

Authors:

LE Chen, AFA Bott, P Tzeferacos, A Rigby, A Bell, R Bingham, C Graziani, J Katz, M Koenig, CK Li, R Petrasso, H-S Park, JS Ross, D Ryu, TG White, B Reville, J Matthews, J Meinecke, F Miniati, EG Zweibel, S Sarkar, AA Schekochihin, DQ Lamb, DH Froula, G Gregori
More details from the publisher

Analytical estimates of proton acceleration in laser-produced turbulent plasmas

(2018)

Authors:

Konstantin Beyer, Brian Reville, Archie Bott, Hye-Sook Park, Subir Sarkar, Gianluca Gregori
More details from the publisher

Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma

Nature Communications Springer Nature 9 (2018) 591

Authors:

P Tzeferacos, Alexandra Rigby, A Bott, A Bell, R Bingham, A Casner, F Cattaneo, EM Churazov, J Emig, F Fiuza, CB Forest, J Foster, C Graziani, J Katz, M Koenig, CK Li, Jena Meinecke, R Petrasso, HS Park, BA Remington, JS Ross, D Ryu, D Ryutov, TG White, B Reville, F Miniati, A Schekochihin, DQ Lamb, DH Froula, Gianluca Gregori

Abstract:

Magnetic fields are ubiquitous in the Universe. Diffuse radiosynchrotron emission observations and Faraday rotation measurements have revealed magnetic field strengths ranging from a few nG and tens of µG in extragalactic disks, halos and clusters [1], up to hundreds of TG in magnetars, as inferred from their spin-down [2]. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations [3–7]. Here we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Evolution of the design and fabrication of astrophysics targets for Turbulent Dynamo (TDYNO) experiments on OMEGA

Fusion Science and Technology Taylor and Francis 73:3 (2017) 434-445

Authors:

SA Muller, DN Kaczala, HM Abu-Shawareb, EL Alfonso, LC Carlson, M Mauldin, P Fitzsimmons, D Lamb, P Tzeferacos, Laura E Chen, Gianluca Gregori, Alexandra Rigby, Archie Bott, TG White, D Froula, J Katz

Abstract:

Highly complex targets are constructed by General Atomics for astrophysically relevant experiments conducted by the University of Chicago on the OMEGA laser facility through the National Laser Users’ Facility (NLUF) program.

Several novel target components are fabricated, precision assembled, and extensively measured in support of this campaign and have evolved over the last 3 years to improve both the science and assembly. Examples include unique laser-machined polyimide grids to enhance plasma mixing at the target center, precision-micromachined cylindrical shields that also act as component spacers, drawn glass target supports to suspend physics packages at critical distances, and tilted pinholes for collimated proton radiography.

Target component fabrication and evolution details for the NLUF Turbulent Dynamo (TDYNO) campaign are presented, along with precision-assembly techniques, metrology methods, and considerations for future TDYNO experiments on OMEGA.

More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet