Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Research theme

  • Quantum materials

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
nick.bultinck@physics.ox.ac.uk
Telephone: 01865 273956
Rudolf Peierls Centre for Theoretical Physics, room 70.26
  • About
  • Publications

Superconductivity from repulsive interactions in Bernal-stacked bilayer graphene

Physical Review B American Physical Society 110:21 (2024) 214517

Authors:

Glenn Wagner, Yves Kwan, Nick Bultinck, Steven Simon, Siddharth Ashok Parameswaran

Abstract:

A striking series of experiments have observed superconductivity in Bernal-stacked bilayer graphene (BBG) when the energy bands are flattened by applying an electrical displacement field. Intriguingly, superconductivity manifests only at nonzero magnetic fields, or when spin-orbit coupling is induced in BBG by coupling to a substrate. We present detailed functional renormalization group and random-phase approximation calculations that provide a unified explanation for the superconducting mechanism in both cases. Both calculations yield a purely electronic 𝑝-wave instability of the Kohn-Luttinger type. The latter can be enhanced either by magnetic fields or Ising spin-orbit coupling, naturally explaining the behavior seen in experiments.
More details from the publisher
Details from ORA
More details

Electron-phonon coupling and competing Kekulé orders in twisted bilayer graphene

Physical Review B American Physical Society 110:8 (2024) 85160

Authors:

Yves H Kwan, Glenn Wagner, Nick Bultinck, Steven Simon, Erez Berg, Siddharth Ashok Parameswaran

Abstract:

Recent scanning tunneling microscopy experiments in twisted bilayer [K. P. Nuckolls et al., Nature (London) 620, 525 (2023)] and trilayer [H. Kim et al., Nature (London) 623, 942 (2023)] graphene have revealed the ubiquity of KekulĂ© charge-density wave order in magic-angle graphene. Most samples are moderately strained and show “incommensurate KekulĂ© spiral” (IKS) order involving a graphene-scale charge density distortion uniaxially modulated on the scale of the moirĂ© superlattice, in accord with theoretical predictions. However, ultralow strain bilayer samples instead show graphene-scale KekulĂ© charge order that is uniform on the moirĂ© scale. This order, especially prominent near filling factor 𝜈=−2, is unanticipated by theory which predicts a time-reversal breaking KekulĂ© current order at low strain. We show that including the coupling of moirĂ© electrons to graphene-scale optical zone-corner (ZC) phonons stabilizes a uniform KekulĂ© charge ordered state at |𝜈|=2 with a quantized topological (spin or anomalous Hall) response. Our work clarifies how this phonon-driven selection of electronic order emerges in the strong-coupling regime of moirĂ© graphene.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Coulomb-driven band unflattening suppresses K-phonon pairing in moire graphene

Physical Review B American Physical Society 109 (2024) 104504

Authors:

Glenn Wagner, Yves H Kwan, Nick Bultinck, Steven Simon, Siddharth A Parameswaran

Abstract:

It is a matter of current debate whether the gate-tunable superconductivity in twisted bilayer graphene is phonon-mediated or arises from electron-electron interactions. The recent observation of the strong coupling of electrons to so-called K-phonon modes in angle-resolved photoemission spectroscopy experiments has resuscitated early proposals that K-phonons drive superconductivity. We show that the bandwidth-enhancing effect of interactions drastically weakens both the intrinsic susceptibility towards pairing as well as the screening of Coulomb repulsion that is essential for the phonon attraction to dominate at low temperature. This rules out purely K-phonon-mediated superconductivity with the observed transition temperature of ∌1 K. We conclude that the unflattening of bands by Coulomb interactions challenges any purely phonon-driven pairing mechanism, and must be addressed by a successful theory of superconductivity in moirĂ© graphene
More details from the publisher
Details from ORA
More details
Details from ArXiV

Resurgence of superconductivity and the role of dxy hole band in FeSe1−xTex

Communications Physics Springer Nature 6:1 (2023) 362

Authors:

Archie B Morfoot, Timur K Kim, Matthew D Watson, Amir A Haghighirad, Shiv J Singh, Nick Bultinck, Amalia I Coldea

Abstract:

Iron-chalcogenide superconductors display rich phenomena caused by orbital-dependent band shifts and electronic correlations. Additionally, they are potential candidates for topological superconductivity due to the band inversion between the Fe d bands and the chalcogen pz band. Here we present a detailed study of the electronic structure of the nematic superconductors FeSe1−xTex (0 < x < 0.4) using angle-resolved photoemission spectroscopy to understand the role of orbital-dependent band shifts, electronic correlations and the chalcogen band. We assess the changes in the effective masses using a three-band low energy model, and the band renormalization via comparison with DFT band structure calculations. The effective masses decrease for all three-hole bands inside the nematic phase, followed by a strong increase for the band with dxy orbital character. Interestingly, this nearly-flat dxy band becomes more correlated as it shifts towards the Fermi level with increasing Te concentrations and as the second superconducting dome emerges. Our findings suggests that the dxy hole band, which is very sensitive to the chalcogen height, could be involved in promoting an additional pairing channel and increasing the density of states to stabilize the second superconducting dome in FeSe1−xTex. This simultaneous shift of the dxy hole band and enhanced superconductivity is in contrast with FeSe1−xSx.
More details from the publisher
Details from ORA
More details

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet