The role of quenching time in the evolution of the mass-size relation of passive galaxies from the WISP survey
(2016)
KROSS: Mapping the Ha emission across the star-formation sequence at z~1
Monthly Notices Of The Royal Astronomical Society Oxford University Press 456:4 (2016) 4533-4541
Abstract:
We present first results from the KMOS Redshift One Spectroscopic Survey (KROSS), an ongoing large kinematical survey of a thousand, z~1 star forming galaxies, with VLT KMOS. Out of the targeted galaxies (~500 so far), we detect and spatially resolve Ha emission in ~90% and 77% of the sample respectively. Based on the integrated Ha flux measurements and the spatially resolved maps we derive a median star formation rate (SFR) of ~7.0 Msun/yr and a median physical size ofThe KMOS AGN Survey at High redshift (KASHz): the prevalence and drivers of ionized outflows in the host galaxies of X-ray AGN★
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 456:2 (2016) 1195-1220
The KMOS Redshift One Spectroscopic Survey (KROSS): dynamical properties, gas and dark matter fractions of typical z ∼ 1 star-forming galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 457:2 (2016) 1888-1904
Abstract:
The KMOS Redshift One Spectroscopic Survey (KROSS) is an ESO-guaranteed time survey of 795 typical star-forming galaxies in the redshift range z = 0.8-1.0 with the KMOS instrument on the Very Large Telescope. In this paper, we present resolved kinematics and star formation rates for 584 z ~ 1 galaxies. This constitutes the largest near-infrared Integral Field Unit survey of galaxies at z ~ 1 to date. We demonstrate the success of our selection criteria with 90 per cent of our targets found to be Hα emitters, of which 81 per cent are spatially resolved. The fraction of the resolved KROSS sample with dynamics dominated by ordered rotation is found to be 83 ± 5 per cent. However, when compared with local samples these are turbulent discs with high gas to baryonic mass fractions, ~35 per cent, and the majority are consistent with being marginally unstable (Toomre Q~1). There is no strong correlation between galaxy averaged velocity dispersion and the total star formation rate, suggesting that feedback from star formation is not the origin of the elevated turbulence. We postulate that it is the ubiquity of high (likely molecular) gas fractions and the associated gravitational instabilities that drive the elevated star formation rates in these typical z ~ 1 galaxies, leading to the 10-fold enhanced star formation rate density. Finally, by comparing the gas masses obtained from inverting the star formation law with the dynamical and stellar masses, we infer an average dark matter to total mass fraction within 2.2re (9.5 kpc) of 65 ± 12 per cent, in agreement with the results from hydrodynamic simulations of galaxy formation.KROSS: Mapping the Ha emission across the star-formation sequence at z~1
(2016)