The KMOS Redshift One Spectroscopic Survey (KROSS): Dynamical properties, gas and dark matter fractions of typical z~1 star-forming galaxies
(2016)
The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully-Fisher relation at z ~ 1
Monthly Notices of the Royal Astronomical Society Oxford University Press (2016)
Abstract:
We present the stellar mass ($M_{*}$), and K-corrected $K$-band absolute magnitude ($M_{K}$) Tully-Fisher relations (TFRs) for sub-samples of the 584 galaxies spatially resolved in H$\alpha$ emission by the KMOS Redshift One Spectroscopic Survey (KROSS). We model the velocity field of each of the KROSS galaxies and extract a rotation velocity, $V_{80}$ at a radius equal to the major axis of an ellipse containing 80% of the total integrated H$\alpha$ flux. The large sample size of KROSS allowed us to select 210 galaxies with well measured rotation speeds. We extract from this sample a further 56 galaxies that are rotationally supported, using the stringent criterion $V_{80}/\sigma > 3$, where $\sigma$ is the flux weighted average velocity dispersion. We find the $M_{K}$ and $M_{*}$ TFRs for this sub-sample to be $M_{K} / \rm{mag}= (-7.3 \pm 0.9) \times [(\log(V_{80}/\rm{km\ s^{-1}})-2.25]- 23.4 \pm 0.2$ , and $\log(M_{*} / M_{\odot})= (4.7 \pm 0.4) \times [(\log(V_{80}/\rm{km\ s^{-1}}) - 2.25] + 10.0 \pm 0.3$, respectively. We find an evolution of the $M_{*}$ TFR zero-point of $-0.41 \pm 0.08$ dex over the last $\sim $8 billion years. However, we measure no evolution in the $M_{K}$ TFR zero-point over the same period. We conclude that rotationally supported galaxies of a given dynamical mass had less stellar mass at $z \sim 1$ than the present day, yet emitted the same amounts of $K$-band light. The ability of KROSS to differentiate, using integral field spectroscopy with KMOS, between those galaxies that are rotationally supported and those that are not explains why our findings are at odds with previous studies without the same capabilities.The Subaru FMOS Galaxy Redshift Survey (FastSound). III. The mass–metallicity relation and the fundamental metallicity relation at z ∼ 1.4*
Publications of the Astronomical Society of Japan Oxford University Press (OUP) 67:6 (2015) 102
The KMOS AGN Survey at High redshift (KASHz): the prevalence and drivers of ionised outflows in the host galaxies of X-ray AGN
(2015)
The Subaru FMOS Galaxy Redshift Survey (FastSound). III. The mass-metallicity relation and the fundamental metallicity relation at $z\sim1.4$
(2015)