K-CLASH: Strangulation and Ram Pressure Stripping in Galaxy Cluster Members at 0.3 < z < 0.6
(2020)
JINGLE -- IV. Dust, HI gas and metal scaling laws in the local Universe
(2020)
JINGLE – IV. Dust, H I gas, and metal scaling laws in the local universe
Monthly Notices of the Royal Astronomical Society Oxford University Press 496:3 (2020) 3668-3687
Abstract:
Scaling laws of dust, H I gas, and metal mass with stellar mass, specific star formation rate, and metallicity are crucial to our understanding of the build-up of galaxies through their enrichment with metals and dust. In this work, we analyse how the dust and metal content varies with specific gas mass (MH I/M⋆) across a diverse sample of 423 nearby galaxies. The observed trends are interpreted with a set of Dust and Element evolUtion modelS (DEUS) – including stellar dust production, grain growth, and dust destruction – within a Bayesian framework to enable a rigorous search of the multidimensional parameter space. We find that these scaling laws for galaxies with −1.0 ≲ log MH I/M⋆ ≲ 0 can be reproduced using closed-box models with high fractions (37–89 per cent) of supernova dust surviving a reverse shock, relatively low grain growth efficiencies (ϵ = 30–40), and long dust lifetimes (1–2 Gyr). The models have present-day dust masses with similar contributions from stellar sources (50–80 per cent) and grain growth (20–50 per cent). Over the entire lifetime of these galaxies, the contribution from stardust (>90 per cent) outweighs the fraction of dust grown in the interstellar medium (<10 per cent). Our results provide an alternative for the chemical evolution models that require extremely low supernova dust production efficiencies and short grain growth time-scales to reproduce local scaling laws, and could help solving the conundrum on whether or not grains can grow efficiently in the interstellar medium.K-CLASH: spatially-resolving star-forming galaxies in field and cluster environments at $z \approx 0.2$-$0.6$
(2020)
K-CLASH: spatially-resolving star-forming galaxies in field and cluster environments at z ≈ 0.2-0.6
Monthly Notices of the Royal Astronomical Society Oxford University Press (2020)