Revealing the Intermediate Mass Black Hole at the Heart of Dwarf Galaxy NGC404 with Sub-parsec Resolution ALMA Observations
Monthly Notices of the Royal Astronomical Society Oxford University Press 496:4 (2020) 4061-4078
Abstract:
We estimate the mass of the intermediate-mass black hole at the heart of the dwarf elliptical galaxy NGC 404 using Atacama Large Millimeter/submillimeter Array (ALMA) observations of the molecular interstellar medium at an unprecedented linear resolution of ≈0.5 pc, in combination with existing stellar kinematic information. These ALMA observations reveal a central disc/torus of molecular gas clearly rotating around the black hole. This disc is surrounded by a morphologically and kinematically complex flocculent distribution of molecular clouds, that we resolve in detail. Continuum emission is detected from the central parts of NGC 404, likely arising from the Rayleigh–Jeans tail of emission from dust around the nucleus, and potentially from dusty massive star-forming clumps at discrete locations in the disc. Several dynamical measurements of the black hole mass in this system have been made in the past, but they do not agree. We show here that both the observed molecular gas and stellar kinematics independently require a ≈ 5 × 105 M black hole once we include the contribution of the molecular gas to the potential. Our best estimate comes from the high-resolution molecular gas kinematics, suggesting the black hole mass of this system is 5.5+4.1−3.8×105 M (at the 99% confidence level), in good agreement with our revised stellar kinematic measurement and broadly consistent with extrapolations from the black hole mass – velocity dispersion and black hole mass – bulge mass relations. This highlights the need to accurately determine the mass and distribution of each dynamically important component around intermediate-mass black holes when attempting to estimate their masses.Revealing the intermediate-mass black hole at the heart of the dwarf galaxy NGC 404 with sub-parsec resolution ALMA observations
(2020)
The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES 249:1 (2020) ARTN 3
K-CLASH: Strangulation and ram pressure stripping in galaxy cluster members at 0.3 < z < 0.6
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 496:3 (2020) 3841-3861
Abstract:
<jats:title>ABSTRACT</jats:title> <jats:p>Galaxy clusters have long been theorized to quench the star formation of their members. This study uses integral-field unit observations from the K-band MultiObject Spectrograph (KMOS) – Cluster Lensing And Supernova survey with Hubble (CLASH) survey (K-CLASH) to search for evidence of quenching in massive galaxy clusters at redshifts 0.3 &lt; z &lt; 0.6. We first construct mass-matched samples of exclusively star-forming cluster and field galaxies, then investigate the spatial extent of their H α emission and study their interstellar medium conditions using emission line ratios. The average ratio of H α half-light radius to optical half-light radius ($r_{\mathrm{e}, {\rm {H}\,\alpha }}/r_{\mathrm{e}, R_{\mathrm{c} } }$) for all galaxies is 1.14 ± 0.06, showing that star formation is taking place throughout stellar discs at these redshifts. However, on average, cluster galaxies have a smaller $r_{\mathrm{e}, {\rm {H}\alpha }}/r_{\mathrm{e}, R_{\mathrm{c} } }$ ratio than field galaxies: 〈$r_{\mathrm{e}, {\rm {H}\alpha }}/r_{\mathrm{e}, R_{\mathrm{c} } }$〉 = 0.96 ± 0.09 compared to 1.22 ± 0.08 (smaller at a 98 per cent credibility level). These values are uncorrected for the wavelength difference between H α emission and Rc-band stellar light but implementing such a correction only reinforces our results. We also show that whilst the cluster and field samples follow indistinguishable mass–metallicity (MZ) relations, the residuals around the MZ relation of cluster members correlate with cluster-centric distance; galaxies residing closer to the cluster centre tend to have enhanced metallicities (significant at the 2.6σ level). Finally, in contrast to previous studies, we find no significant differences in electron number density between the cluster and field galaxies. We use simple chemical evolution models to conclude that the effects of disc strangulation and ram-pressure stripping can quantitatively explain our observations.</jats:p>The 16th data release of the Sloan Digital Sky Surveys: first release from the APOGEE-2 Southern Survey and full release of eBOSS spectra
Astrophysical Journal Supplement American Astronomical Society 249:1 (2020) 3