The energetics of starburst-driven outflows at z ∼ 1 from KMOS
Monthly Notices of the Royal Astronomical Society Oxford University Press 487:1 (2019) 381-393
Abstract:
We present an analysis of the gas outflow energetics from KMOS observations of ∼ 529 main-sequence star-forming galaxies at z ∼ 1 using broad, underlying H α and forbidden lines of [N II] and [S II]. Based on the stacked spectra for a sample with median star-formation rates and stellar masses of SFR = 7 M⊙ yr−1 and M⋆ = (1.0 ± 0.1) × 1010 M⊙, respectively, we derive a typical mass outflow rate of M˙wind = 1–4 M⊙ yr−1 and a mass loading of M˙wind / SFR = 0.2–0.4. By comparing the kinetic energy in the wind with the energy released by supernovae, we estimate a coupling efficiency between the star formation and wind energetics of ϵ ∼ 0.03. The mass loading of the wind does not show a strong trend with star-formation rate over the range ∼ 2–20 M⊙ yr−1, although we identify a trend with stellar mass such that dM / dt / SFR ∝ M0.26±0.07⋆. Finally, the line width of the broad H α increases with disc circular velocity with a sub-linear scaling relation FWHMbroad ∝ v0.21 ± 0.05. As a result of this behaviour, in the lowest mass galaxies (M⋆ ≲ 1010 M⊙), a significant fraction of the outflowing gas should have sufficient velocity to escape the gravitational potential of the halo whilst in the highest mass galaxies (M⋆ ≳ 1010 M⊙) most of the gas will be retained, flowing back on to the galaxy disc at later times.JINGLE, a JCMT legacy survey of dust and gas for galaxy evolution studies: II. SCUBA-2 850 {\mu}m data reduction and dust flux density catalogues
(2019)
JINGLE, a JCMT legacy survey of dust and gas for galaxy evolution studies: II. SCUBA-2 850 μm data reduction and dust flux density catalogues
Monthly Notices of the Royal Astronomical Society Oxford University Press 486:3 (2019) 4166-4185
Abstract:
We present the SCUBA-2 850μm component of JINGLE, the new JCMT large survey for dust and gas in nearby galaxies, which with 193 galaxies is the largest targeted survey of nearby galaxies at 850 μm. We provide details of our SCUBA-2 data reduction pipeline, optimized for slightly extended sources, and including a calibration model adjusted to match conventions used in other far-infrared (FIR) data. We measure total integrated fluxes for the entire JINGLE sample in 10 infrared/submillimetre bands, including all WISE, Herschel-PACS, Herschel-SPIRE, and SCUBA-2 850 μm maps, statistically accounting for the contamination by CO(J = 3–2) in the 850 μm band. Of our initial sample of 193 galaxies, 191 are detected at 250 μm with a ≥5σ significance. In the SCUBA-2 850 μm band we detect 126 galaxies with ≥3σ significance. The distribution of the JINGLE galaxies in FIR/sub-millimetre colour–colour plots reveals that the sample is not well fit by single modified-blackbody models that assume a single dust-emissivity index (β). Instead, our new 850 μm data suggest either that a large fraction of our objects require β < 1.5, or that a model allowing for an excess of sub-mm emission (e.g. a broken dust emissivity law, or a very cold dust component ≲10 K) is required. We provide relations to convert FIR colours to dust temperature and β for JINGLE-like galaxies. For JINGLE the FIR colours correlate more strongly with star-formation rate surface-density rather than the stellar surface-density, suggesting heating of dust is greater due to younger rather than older stellar-populations, consistent with the low proportion of early-type galaxies in the sample.WISDOM project - IV. A molecular gas dynamical measurement of the supermassive black hole mass in NGC 524
(2019)