Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Martin Bureau

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
martin.bureau@physics.ox.ac.uk
Telephone: 01865 (2)73377
Denys Wilkinson Building, room 701
Home page
ORCID
  • About
  • Publications

JINGLE V: Dust properties of nearby galaxies derived from hierarchical Bayesian SED fitting

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2019)

Authors:

Isabella Lamperti, Amélie Saintonge, Ilse De Looze, Gioacchino Accurso, Christopher JR Clark, Matthew WL Smith, Christine D Wilson, Elias Brinks, Toby Brown, Martin Bureau, David L Clements, Stephen Eales, David HW Glass, Ho Seong Hwang, Jong Chul Lee, Lihwai Lin, Michal J Michalowski, Mark Sargent, Thomas G Williams, Ting Xiao, Chentao Yang

Abstract:

Abstract We study the dust properties of 192 nearby galaxies from the JINGLE survey using photometric data in the 22-850$\mu$m range. We derive the total dust mass, temperature T and emissivity index β of the galaxies through the fitting of their spectral energy distribution (SED) using a single modified black-body model (SMBB). We apply a hierarchical Bayesian approach that reduces the known degeneracy between T and β. Applying the hierarchical approach, the strength of the T-β anti-correlation is reduced from a Pearson correlation coefficient R = −0.79 to R = −0.52. For the JINGLE galaxies we measure dust temperatures in the range 17 − 30 K and dust emissivity indices β in the range 0.6 − 2.2. We compare the SMBB model with the broken emissivity modified black-body (BMBB) and the two modified black-bodies (TMBB) models. The results derived with the SMBB and TMBB are in good agreement, thus applying the SMBB, which comes with fewer free parameters, does not penalize the measurement of the cold dust properties in the JINGLE sample. We investigate the relation between T and β and other global galaxy properties in the JINGLE and Herschel Reference Survey (HRS) sample. We find that β correlates with the stellar mass surface density (R = 0.62) and anti-correlates with the HI mass fraction (MHI/M*, R = −0.65), whereas the dust temperature correlates strongly with the SFR normalized by the dust mass (R = 0.73). These relations can be used to estimate T and β in galaxies with insufficient photometric data available to measure them directly through SED fitting.
More details from the publisher
Details from ORA
More details

The energetics of starburst-driven outflows at z=1 from KMOS

(2019)

Authors:

Mark Swinbank, Chris Harrison, Alfie Tiley, Helen Johnson, Ian Smail, John Stott, Philip Best, Richard Bower, Martin Bureau, Andy Bunker, Michele Cirasuolo, Matt Jarvis, Georgios Magdis, Ray Sharples, David Sobral
More details from the publisher

The energetics of starburst-driven outflows at z ∼ 1 from KMOS

Monthly Notices of the Royal Astronomical Society Oxford University Press 487:1 (2019) 381-393

Authors:

AM Swinbank, CM Harrison, AL Tiley, HL Johnson, I Smail, JP Stott, PN Best, RG Bower, Martin Bureau, A Bunker, M Cirasuolo, M Jarvis, GE Magdis, RM Sharples, D Sobral

Abstract:

We present an analysis of the gas outflow energetics from KMOS observations of ∼ 529 main-sequence star-forming galaxies at z ∼ 1 using broad, underlying H α and forbidden lines of [N II] and [S II]. Based on the stacked spectra for a sample with median star-formation rates and stellar masses of SFR = 7 M⊙   yr−1 and M⋆ = (1.0 ± 0.1) × 1010 M⊙, respectively, we derive a typical mass outflow rate of M˙wind = 1–4 M⊙ yr−1 and a mass loading of M˙wind / SFR = 0.2–0.4. By comparing the kinetic energy in the wind with the energy released by supernovae, we estimate a coupling efficiency between the star formation and wind energetics of ϵ ∼  0.03. The mass loading of the wind does not show a strong trend with star-formation rate over the range ∼ 2–20 M⊙ yr−1, although we identify a trend with stellar mass such that dM / dt / SFR ∝ M0.26±0.07⋆⁠. Finally, the line width of the broad H α increases with disc circular velocity with a sub-linear scaling relation FWHMbroad ∝ v0.21 ± 0.05. As a result of this behaviour, in the lowest mass galaxies (M⋆ ≲ 1010 M⊙), a significant fraction of the outflowing gas should have sufficient velocity to escape the gravitational potential of the halo whilst in the highest mass galaxies (M⋆ ≳ 1010 M⊙) most of the gas will be retained, flowing back on to the galaxy disc at later times.
More details from the publisher
Details from ORA
More details
Details from ArXiV

JINGLE, a JCMT legacy survey of dust and gas for galaxy evolution studies: II. SCUBA-2 850 {\mu}m data reduction and dust flux density catalogues

(2019)

Authors:

Matthew WL Smith, Christopher JR Clark, Ilse De Looze, Isabella Lamperti, Amélie Saintonge, Christine D Wilson, Gioacchino Accurso, Elias Brinks, Martin Bureau, Eun Jung Chung, Phillip J Cigan, David L Clements, Thavisha Dharmawardena, Lapo Fanciullo, Yang Gao, Yu Gao, Walter K Gear, Haley L Gomez, Joshua Greenslade, Ho Seong Hwang, Francisca Kemper, Jong Chul Lee, Cheng Li, Lihwai Lin, Lijie Liu, Dániel Cs Molnár, Angus Mok, Hsi-An Pan, Mark Sargent, Peter Scicluna, Connor MA Smith, Sheona Urquhart, Thomas G Williams, Ting Xiao, Chentao Yang, Ming Zhu
More details from the publisher

JINGLE, a JCMT legacy survey of dust and gas for galaxy evolution studies: II. SCUBA-2 850 μm data reduction and dust flux density catalogues

Monthly Notices of the Royal Astronomical Society Oxford University Press 486:3 (2019) 4166-4185

Authors:

MWL Smith, CJR Clark, I De Looze, I Lamperti, A Saintonge, CD Wilson, G Accurso, E Brinks, Martin Bureau, EJ Chung, PJ Cigan, DL Clements, T Dharmawardena, L Fanciullo, Y Gao, Y Gao, WK Gear, HL Gomez, J Greenslade, HS Hwang, F Kemper, JC Lee, C Li, L Lin, L Liu, DC Molnár, A Mok, H-A Pan, M Sargent, P Scicluna, CMA Smith, S Urquhart, TG Williams, T Xiao, C Yang, M Zhu

Abstract:

We present the SCUBA-2 850μm component of JINGLE, the new JCMT large survey for dust and gas in nearby galaxies, which with 193 galaxies is the largest targeted survey of nearby galaxies at 850 μm. We provide details of our SCUBA-2 data reduction pipeline, optimized for slightly extended sources, and including a calibration model adjusted to match conventions used in other far-infrared (FIR) data. We measure total integrated fluxes for the entire JINGLE sample in 10 infrared/submillimetre bands, including all WISE, Herschel-PACS, Herschel-SPIRE, and SCUBA-2 850 μm maps, statistically accounting for the contamination by CO(J = 3–2) in the 850 μm band. Of our initial sample of 193 galaxies, 191 are detected at 250 μm with a ≥5σ significance. In the SCUBA-2 850 μm band we detect 126 galaxies with ≥3σ significance. The distribution of the JINGLE galaxies in FIR/sub-millimetre colour–colour plots reveals that the sample is not well fit by single modified-blackbody models that assume a single dust-emissivity index (β). Instead, our new 850 μm data suggest either that a large fraction of our objects require β < 1.5, or that a model allowing for an excess of sub-mm emission (e.g. a broken dust emissivity law, or a very cold dust component ≲10 K) is required. We provide relations to convert FIR colours to dust temperature and β for JINGLE-like galaxies. For JINGLE the FIR colours correlate more strongly with star-formation rate surface-density rather than the stellar surface-density, suggesting heating of dust is greater due to younger rather than older stellar-populations, consistent with the low proportion of early-type galaxies in the sample.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet