In and out star formation in z ~ 1.5 quiescent galaxies from rest-frame UV spectroscopy and the far-infrared
Abstract:
We present a sample of 34 spectroscopically confirmed BzK-selected 1011 M quiescent galaxies (pBzK) in the COSMOS field. The targets were initially observed with VIMOS on the VLT to facilitate the calibration of the photometric redshifts of massive galaxies at z and 1:5. Here we describe the reduction and analysis of the data, and the spectrophotometric properties of these pBzK galaxies. In particular, using a spatially resolved median 2D spectrum, we find that the fraction of stellar populations with ages <1 Gyr is at least 3 times higher in the outer regions of the pBzK galaxies than in their cores. This results in a mild age gradient of age 0:4 Gyr over 6 kpc and suggests either the occurrence of widespread rejuvenation episodes or that inside-out quenching played a role in the passivization of this galaxy population. We also report on low-level star formation rates derived from the [OII]3727 emission line, with SFROII 3:74:5 M yr1. This estimate is confirmed by an independent measurement on a separate sample of similarly-selected quiescent galaxies in the COSMOS field, using stacked far-infrared data (SFRFIR 24 M yr1). This second, photometric sample also displays significant excess at 1.4 GHz, suggestive of the presence of radio-mode AGN activity.Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
Improved dynamical constraints on the mass of the central black hole in NGC 404
Abstract:
We explore the nucleus of the nearby 109 M⊙ early-type galaxy, NGC 404, using Hubble Space Telescope (HST)/STIS spectroscopy and WFC3 imaging. We first present evidence for nuclear variability in UV, optical, and infrared filters over a time period of 15 years. This variability adds to the already substantial evidence for an accreting black hole at the center of NGC 404. We then redetermine the dynamical black hole mass in NGC 404 including modeling of the nuclear stellar populations. We combine HST/STIS spectroscopy with WFC3 images to create a local color-M/L relation derived from stellar population modeling of the STIS data. We then use this to create a mass model for the nuclear region. We use Jeans modeling to fit this mass model to adaptive optics stellar kinematic observations from Gemini/NIFS. From our stellar dynamical modeling, we find a 3σ upper limit on the black hole mass of 1.5 × 105 M⊙. Given the accretion evidence for a black hole, this upper limit makes NGC 404 the lowest mass central black hole with dynamical mass constraints. We find that the kinematics of H2 emission line gas show evidence for non-gravitational motions preventing the use of gas dynamical modeling to constrain the black hole mass. Our stellar population modeling also reveals that the central, counter-rotating region of the nuclear cluster is dominated by ∼1 Gyr old populations.Systematic trends in total-mass profiles from dynamical models of early-type galaxies
Abstract:
We study trends in the slope of the total mass profiles and dark matter fractions within the central half-light radius of 258 early-type galaxies, using data from the volume-limited ATLAS3D survey. We use three distinct sets of dynamical models, which vary in their assumptions and also allow for spatial variations in the stellar mass-to-light ratio, to test the robustness of our results. We confirm that the slopes of the total mass profiles are approximately isothermal, and investigate how the total mass slope depends on various galactic properties. The most statistically significant correlations we find are a function of either surface density, Σe, or velocity dispersion, σe. However there is evidence for a break in the latter relation, with a nearly universal logarithmic slope above log10[σe/(km s−1)] ∼ 2.1 and a steeper trend below this value. For the 142 galaxies above that critical σe value, the total mass–density logarithmic slopes have a mean value 〈γ΄〉 = −2.193 ± 0.016 (1σ error) with an observed rms scatter of only σγ′=0.168±0.015. Considering the observational errors, we estimate an intrinsic scatter of σγ′intr≈0.15. These values are broadly consistent with those found by strong lensing studies at similar radii and agree, within the tight errors, with values recently found at much larger radii via stellar dynamics or H I rotation curves (using significantly smaller samples than this work).