Improving the full spectrum fitting method: accurate convolution with Gauss-Hermite functions
Abstract:
I start by providing an updated summary of the penalized pixel-fitting (ppxf) method, which is used to extract the stellar and gas kinematics, as well as the stellar population of galaxies, via full spectrum fitting. I then focus on the problem of extracting the kinematic when the velocity dispersion σ is smaller than the velocity sampling ΔV, which is generally, by design, close to the instrumental dispersion σinst. The standard approach consists of convolving templates with a discretized kernel, while fitting for its parameters. This is obviously very inaccurate when σ ≲ ΔV=2, due to undersampling. Oversampling can prevent this, but it has drawbacks. Here I present a more accurate and efficient alternative. It avoids the evaluation of the under-sampled kernel, and instead directly computes its well-sampled analytic Fourier transform, for use with the convolution theorem. A simple analytic transform exists when the kernel is described by the popular Gauss-Hermite parametrization (which includes the Gaussian as special case) for the line-of-sight velocity distribution. I describe how this idea was implemented in a significant upgrade to the publicly available ppxf software. The key advantage of the new approach is that it provides accurate velocities regardless of σ. This is important e.g. for spectroscopic surveys targeting galaxies with σ << σinst, for galaxy redshift determinations, or for measuring line-of-sight velocities of individual stars. The proposed method could also be used to fix Gaussian convolution algorithms used in today’s popular software packages.
SDSS-IV MaNGA IFS Galaxy Survey --- Survey Design, Execution, and Initial Data Quality
Abstract:
The MaNGA Survey (Mapping Nearby Galaxies at Apache Point Observatory) is one of three core programs in the Sloan Digital Sky Survey IV. It is obtaining integral field spectroscopy (IFS) for 10K nearby galaxies at a spectral resolution of R ~ 2000 from 3622 − 10, 354Å. The design of the survey is driven by a set of science requirements on the precision of estimates of the following properties: star formation rate surface density, gas metallicity, stellar population age, metallicity, and abundance ratio, and their gradients; stellar and gas kinematics; and enclosed gravitational mass as a function of radius. We describe how these science requirements set the depth of the observations and dictate sample selection. The majority of targeted galaxies are selected to ensure uniform spatial coverage in units of effective radius (Re) while maximizing spatial resolution. About 2/3 of the sample is covered out to 1.5Re (Primary sample), and 1/3 of the sample is covered to 2.5Re (Secondary sample). We describe the survey execution with details that would be useful in the design of similar future surveys. We also present statistics on the achieved data quality, specifically, the point spread function, sampling uniformity, spectral resolution, sky subtraction, and flux calibration. For our Primary sample, the median r-band signal-to-noise ratio is ~ 73 per 1.4Å pixel for spectra stacked between 1–1.5 Re. Measurements of various galaxy properties from the first year data show that we are meeting or exceeding the defined requirements for the majority of our science goals.Improved Dynamical Constraints on the Mass of the central Black Hole in NGC 404
Dominant dark matter and a counter rotating disc: MUSE view of the low luminosity S0 galaxy NGC 5102
Abstract:
The kinematics and stellar populations of the low-mass nearby S0 galaxy NGC 5102 are studied from integral field spectra taken with the Multi-Unit Spectroscopic Explorer. The kinematic maps reveal for the first time that NGC 5102 has the characteristic 2σ peaks indicative of galaxies with counter-rotating discs. This interpretation is quantitatively confirmed by fitting two kinematic components to the observed spectra. Through stellar population analysis, we confirm the known young stellar population in the centre and find steep age and metallicity gradients. We construct axisymmetric Jeans anisotropic models of the stellar dynamics to investigate the initial mass function (IMF) and the dark matter halo of the galaxy. The models show that this galaxy is quite different from all galaxies previously studied with a similar approach: even within the half-light radius, it cannot be approximated with the self-consistent mass-follows-light assumption. Including a Navarro, Frenk & White dark matter halo, we need a heavy IMF and a dark matter fraction of 0.37 ± 0.04 within a sphere of one Re radius to describe the stellar kinematics. The more general model with a free slope of the dark matter halo shows that slope and IMF are degenerate, but indicates that a light weight IMF (Chabrier-like) and a higher dark matter fraction, with a steeper (contracted) halo, fit the data better. Regardless of the assumptions about the halo profile, we measure the slope of the total mass density to be −1.75 ± 0.04. This is shallower than the slope of −2 of an isothermal halo and shallower than published slopes for more massive early-type galaxies.