The low dark matter content of the lenticular galaxy NGC 3998
(2016)
The low dark matter content of the lenticular galaxy NGC 3998
Monthly Notices of the Royal Astronomical Society Oxford University Press 460:3 (2016) 3029-3043
Abstract:
We observed the lenticular galaxy NGC 3998 with the Mitchell Integral-Field Spectrograph and extracted line-of-sight velocity distributions out to three half-light radii. We constructed collisionless orbit models in order to constrain NGC 3998's dark and visible structure, using kinematics from both the Mitchell and SAURON instruments. We find NGC 3998 to be almost axisymmetric, seen nearly face-on with a flattened intrinsic shape - i.e. a face-on fast rotator. We find an I-band mass-to-light ratio of 4.7 -0.45 +0.32 in good agreement with previous spectral fitting results for this galaxy. Our best-fitting orbit model shows a both a bulge and a disc component, with a non-negligible counter-rotating component also evident. We find that relatively little dark matter is needed to model this galaxy, with an inferred dark mass fraction of just (7.1 -7.1 +8.1 ) per cent within one half-light radius.Linear relation between HI circular velocity and stellar velocity dispersion in early-type galaxies, and slope of the density profiles
(2016)
Linear relation between H i circular velocity and stellar velocity dispersion in early-type galaxies, and slope of the density profiles
Monthly Notices of the Royal Astronomical Society Oxford University Press 460:2 (2016) 1382-1389
Abstract:
© 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. We report a tight linear relation between the H i circular velocity measured at 6 R e and the stellar velocity dispersion measured within 1 R e for a sample of 16 early-type galaxies with stellar mass between 1010 and 1011 M ⊙ . The key difference from previous studies is that we only use spatially resolved v circ (H i) measurements obtained at large radius for a sizeable sample of objects. We can therefore link a kinematical tracer of the gravitational potential in the dark-matter dominated outer regions of galaxies with one in the inner regions, where baryons control the distribution of mass. We find that v circ (H i)= 1.33 σ e with an observed scatter of just 12 per cent. This indicates a strong coupling between luminous and dark matter from the inner- to the outer regions of early-type galaxies, analogous to the situation in spirals and dwarf irregulars. The v circ (H i)-σ e relation is shallower than those based on v circ measurements obtained from stellar kinematics and modelling at smaller radius, implying that v circ declines with radius - as in bulge-dominated spirals. Indeed, the value of v circ (H i) is typically 25 per cent lower than the maximum v circ derived at ~0.2 R e from dynamical models. Under the assumption of power-law total density profiles ρ ∝ r -γ , our data imply an average logarithmic slope 〈γ〉 = 2.18 ± 0.03 across the sample, with a scatter of 0.11 around this value. The average slope and scatter agree with recent results obtained from stellar kinematics alone for a different sample of early-type galaxies.Radial constraints on the initial mass function from TiO features and Wing-Ford band in early-type galaxies
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 457:2 (2016) 1468-1489