Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

The low dark matter content of the lenticular galaxy NGC 3998

(2016)

Authors:

NF Boardman, A Weijmans, RCE van den Bosch, L Zhu, A Yildirim, G van de Ven, M Cappellari, PT de Zeeuw, E Emsellem, D Krajnović, T Naab
More details from the publisher

The low dark matter content of the lenticular galaxy NGC 3998

Monthly Notices of the Royal Astronomical Society Oxford University Press 460:3 (2016) 3029-3043

Authors:

NF Boardman, A-M Weijmans, R van den Bosch, L Zhu, A Yildirim, G van de Ven, Michele Cappellari, T de Zeeuw, E Emsellem, D Krajnović, T Naab

Abstract:

We observed the lenticular galaxy NGC 3998 with the Mitchell Integral-Field Spectrograph and extracted line-of-sight velocity distributions out to three half-light radii. We constructed collisionless orbit models in order to constrain NGC 3998's dark and visible structure, using kinematics from both the Mitchell and SAURON instruments. We find NGC 3998 to be almost axisymmetric, seen nearly face-on with a flattened intrinsic shape - i.e. a face-on fast rotator. We find an I-band mass-to-light ratio of 4.7 -0.45 +0.32 in good agreement with previous spectral fitting results for this galaxy. Our best-fitting orbit model shows a both a bulge and a disc component, with a non-negligible counter-rotating component also evident. We find that relatively little dark matter is needed to model this galaxy, with an inferred dark mass fraction of just (7.1 -7.1 +8.1 ) per cent within one half-light radius.
More details from the publisher
Details from ORA
More details
More details

Linear relation between HI circular velocity and stellar velocity dispersion in early-type galaxies, and slope of the density profiles

(2016)

Authors:

Paolo Serra, Tom Oosterloo, Michele Cappellari, Milan den Heijer, Gyula IG Józsa
More details from the publisher

Linear relation between H i circular velocity and stellar velocity dispersion in early-type galaxies, and slope of the density profiles

Monthly Notices of the Royal Astronomical Society Oxford University Press 460:2 (2016) 1382-1389

Authors:

P Serra, T Oosterloo, Michele Cappellari, M den Heijer, GIG Józsa

Abstract:

© 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. We report a tight linear relation between the H i circular velocity measured at 6 R e and the stellar velocity dispersion measured within 1 R e for a sample of 16 early-type galaxies with stellar mass between 1010 and 1011 M ⊙ . The key difference from previous studies is that we only use spatially resolved v circ (H i) measurements obtained at large radius for a sizeable sample of objects. We can therefore link a kinematical tracer of the gravitational potential in the dark-matter dominated outer regions of galaxies with one in the inner regions, where baryons control the distribution of mass. We find that v circ (H i)= 1.33 σ e with an observed scatter of just 12 per cent. This indicates a strong coupling between luminous and dark matter from the inner- to the outer regions of early-type galaxies, analogous to the situation in spirals and dwarf irregulars. The v circ (H i)-σ e relation is shallower than those based on v circ measurements obtained from stellar kinematics and modelling at smaller radius, implying that v circ declines with radius - as in bulge-dominated spirals. Indeed, the value of v circ (H i) is typically 25 per cent lower than the maximum v circ derived at ~0.2 R e from dynamical models. Under the assumption of power-law total density profiles ρ ∝ r -γ , our data imply an average logarithmic slope 〈γ〉 = 2.18 ± 0.03 across the sample, with a scatter of 0.11 around this value. The average slope and scatter agree with recent results obtained from stellar kinematics alone for a different sample of early-type galaxies.
More details from the publisher
Details from ORA
More details
More details

Radial constraints on the initial mass function from TiO features and Wing-Ford band in early-type galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 457:2 (2016) 1468-1489

Authors:

F La Barbera, A Vazdekis, I Ferreras, A Pasquali, M Cappellari, I Martin-Navarro, F Schoenebeck, J Falcon-Barroso
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 45
  • Page 46
  • Page 47
  • Page 48
  • Current page 49
  • Page 50
  • Page 51
  • Page 52
  • Page 53
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet