Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
A VUV sub-micron hotspot for photoemission spectroscopy

Vacuum ultraviolet (VUV) lasers have exhibited great potential as the light source for various spectroscopies, which, if they can be focused into a smaller beam spot, will not only allow investigation of mesoscopic materials but also find applications in manufacture of nano-objects with excellent precision. Towards this goal, scientists in China invented a 177 nm VUV laser system that can achieve a record-small (<1 μm) focal spot at a long focal length (~45 mm). This system can be re-equipped for usage in low-cost ARPES and might benefit quantum materials, condensed matter physics and nanophotonics.

Prof Yulin Chen

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Electronic structures and photoemission spectroscopy
yulin.chen@physics.ox.ac.uk
Clarendon Laboratory, room RM263, Mullard Bldg.
Recent publications
  • About
  • Publications

Topological phase transition in a magnetic Weyl semimetal

Physical Review B American Physical Society (APS) 104:20 (2021) 205140

Authors:

DF Liu, QN Xu, EK Liu, JL Shen, CC Le, YW Li, D Pei, AJ Liang, P Dudin, TK Kim, C Cacho, YF Xu, Y Sun, LX Yang, ZK Liu, C Felser, SSP Parkin, YL Chen
More details from the publisher

Magnetism-induced topological transition in EuAs3.

Nature communications 12:1 (2021) 6970

Authors:

Erjian Cheng, Wei Xia, Xianbiao Shi, Hongwei Fang, Chengwei Wang, Chuanying Xi, Shaowen Xu, Darren C Peets, Linshu Wang, Hao Su, Li Pi, Wei Ren, Xia Wang, Na Yu, Yulin Chen, Weiwei Zhao, Zhongkai Liu, Yanfeng Guo, Shiyan Li

Abstract:

The nature of the interaction between magnetism and topology in magnetic topological semimetals remains mysterious, but may be expected to lead to a variety of novel physics. We systematically studied the magnetic semimetal EuAs3, demonstrating a magnetism-induced topological transition from a topological nodal-line semimetal in the paramagnetic or the spin-polarized state to a topological massive Dirac metal in the antiferromagnetic ground state at low temperature. The topological nature in the antiferromagnetic state and the spin-polarized state has been verified by electrical transport measurements. An unsaturated and extremely large magnetoresistance of ~2 × 105% at 1.8 K and 28.3 T is observed. In the paramagnetic states, the topological nodal-line structure at the Y point is proven by angle-resolved photoemission spectroscopy. Moreover, a temperature-induced Lifshitz transition accompanied by the emergence of a new band below 3 K is revealed. These results indicate that magnetic EuAs3 provides a rich platform to explore exotic physics arising from the interaction of magnetism with topology.
More details from the publisher
More details
More details

Pressure-induced a partial disorder and superconductivity in quasi-one-dimensional Weyl semimetal (NbSe4)2I

Materials Today Physics Elsevier 21 (2021) 100509

Authors:

C Pei, W Shi, Y Zhao, L Gao, J Gao, Y Li, H Zhu, Q Zhang, N Yu, C Li, W Cao, SA Medvedev, C Felser, B Yan, Z Liu, Y Chen, Z Wang, Y Qi
More details from the publisher
More details
More details

Band-selective Holstein polaron in Luttinger liquid material A0.3MoO3 (A = K, Rb).

Nature communications 12:1 (2021) 6183

Authors:

L Kang, X Du, JS Zhou, X Gu, YJ Chen, RZ Xu, QQ Zhang, SC Sun, ZX Yin, YW Li, D Pei, J Zhang, RK Gu, ZG Wang, ZK Liu, R Xiong, J Shi, Y Zhang, YL Chen, LX Yang

Abstract:

(Quasi-)one-dimensional systems exhibit various fascinating properties such as Luttinger liquid behavior, Peierls transition, novel topological phases, and the accommodation of unique quasiparticles (e.g., spinon, holon, and soliton, etc.). Here we study molybdenum blue bronze A0.3MoO3 (A = K, Rb), a canonical quasi-one-dimensional charge-density-wave material, using laser-based angle-resolved photoemission spectroscopy. Our experiment suggests that the normal phase of A0.3MoO3 is a prototypical Luttinger liquid, from which the charge-density-wave emerges with decreasing temperature. Prominently, we observe strong renormalizations of band dispersions, which are recognized as the spectral function of Holstein polaron derived from band-selective electron-phonon coupling in the system. We argue that the strong electron-phonon coupling plays an important role in electronic properties and the charge-density-wave transition in blue bronzes. Our results not only reconcile the long-standing heavy debates on the electronic properties of blue bronzes but also provide a rare platform to study interesting excitations in Luttinger liquid materials.
More details from the publisher
More details
More details

Charge Density Wave Orders and Enhanced Superconductivity under Pressure in the Kagome Metal CsV3 Sb5.

Advanced materials (Deerfield Beach, Fla.) 33:42 (2021) e2102813

Authors:

Qi Wang, Pengfei Kong, Wujun Shi, Cuiying Pei, Chenhaoping Wen, Lingling Gao, Yi Zhao, Qiangwei Yin, Yueshen Wu, Gang Li, Hechang Lei, Jun Li, Yulin Chen, Shichao Yan, Yanpeng Qi

Abstract:

Superconductivity in topological kagome metals has recently received great research interests. Here, charge density wave (CDW) orders and the evolution of superconductivity under various pressures in CsV3 Sb5 single crystal with V kagome lattice are investigated. By using high-resolution scanning tunneling microscopy/spectroscopy (STM/STS), two CDW orders in CsV3 Sb5 are observed which correspond to 4a × 1a and 2a × 2a superlattices. By applying pressure, the superconducting transition temperature Tc is significantly enhanced and reaches a maximum value of 8.2 K at around 1 GPa. Accordingly, CDW state is gradually declined as increasing the pressure, which indicates the competing interplay between CDW and superconducting state in this material. The broad superconducting transitions around 0.4-0.8 GPa can be related to the strong competition relation among two CDW states and superconductivity. These results demonstrate that CsV3 Sb5 is a new platform for exploring the interplay between superconductivity and CDW in topological kagome metals.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet