Lyα emission in galaxies at z ≃ 5−6: new insight from JWST into the statistical distributions of Lyα properties at the end of reionization
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 531:2 (2024) 2701-2730
Quantifying the Escape of Ly α at z ≈ 5–6: A Census of Ly α Escape Fraction with H α -emitting Galaxies Spectroscopically Confirmed by JWST and VLT/MUSE
The Astrophysical Journal: Supplement Series American Astronomical Society 272:2 (2024) 33
Abstract:
The James Webb Space Telescope provides an unprecedented opportunity for unbiased surveys of Hα-emitting galaxies at z > 4 with the NIRCam's wide-field slitless spectroscopy (WFSS). In this work, we present a census of Lyα escape fraction (f esc,Lyα ) of 165 star-forming galaxies at z = 4.9–6.3, utilizing their Hα emission directly measured from FRESCO NIRCam/WFSS data. We search for Lyα emission of each Hα-emitting galaxy in the Very Large Telescope/MUSE data. The overall f esc,Lyα measured by stacking is 0.090 ± 0.006. We find that f esc,Lyα displays a strong dependence on the observed UV slope (β obs) and E(B − V), such that the bluest galaxies (β obs ∼ −2.5) have the largest escape fractions (f esc,Lyα ≈ 0.6), indicative of the crucial role of dust and gas in modulating the escape of Lyα photons. f esc,Lyα is less well related to other parameters, including the UV luminosity and stellar mass, and the variation in f esc,Lyα with them can be explained by their underlying coupling with E(B − V) or β obs. Our results suggest a tentative decline in f esc,Lyα at z ≳ 5, implying increasing intergalactic medium attenuation toward higher redshift. Furthermore, the dependence of f esc,Lyα on β obs is proportional to that of the ionizing photon escape fraction (f esc,LyC), indicating that the escape of Lyα and ionizing photon may be regulated by similar physical processes. With f esc,Lyα as a proxy to f esc,LyC, we infer that UV-faint (M UV > −16) galaxies contribute >70% of the total ionizing emissivity at z = 5–6. If these relations hold during the epoch of reionization, UV-faint galaxies can contribute the majority of UV photon budget to reionize the Universe.JADES: Insights into the low-mass end of the mass–metallicity–SFR relation at 3 < z < 10 from deep JWST/NIRSpec spectroscopy⋆
Astronomy & Astrophysics EDP Sciences 684 (2024) a75
JADES: the emergence and evolution of Lyα emission and constraints on the intergalactic medium neutral fraction
Astronomy & Astrophysics EDP Sciences 683 (2024) A238
Abstract:
The rest-frame UV recombination emission line Lyα can be powered by ionising photons from young massive stars in star-forming galaxies, but the fact that it can be resonantly scattered by neutral gas complicates its interpretation. For reionisation-era galaxies, a neutral intergalactic medium will scatter Lyα from the line of sight, making Lyα a useful probe of the neutral fraction evolution. Here, we explore Lyα in JWST/NIRSpec spectra from the ongoing JADES programme, which targets hundreds of galaxies in the well-studied GOODS-S and GOODS-N fields. These sources are UV-faint (−20.4 < MUV < −16.4) and thus represent a poorly explored class of galaxy. We fitted the low spectral resolution spectra (R ∼ 100) of a subset of 84 galaxies in GOODS-S with zspec > 5.6 (as derived with optical lines) with line and continuum models to search for significant line emission. Through exploration of the R100 data, we find evidence for Lyα in 17 sources. This sample allowed us to place observational constraints on the fraction of galaxies with Lyα emission in the redshift range 5.6 < z < 7.5, with a decrease from z = 6 to z = 7. We also find a positive correlation between the Lyα equivalent width and MUV, as seen in other samples. We used these results to estimate the neutral gas fraction at z ∼ 7, and our estimates are in agreement with previous results (XHI ∼ 0.5 − 0.9).Metal-poor star formation at z > 6 with JWST: new insight into hard radiation fields and nitrogen enrichment on 20 pc scales
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 529:4 (2024) 3301-3322