Photometric detection at 7.7 μm of a galaxy beyond redshift 14 with JWST/MIRI
Nature Astronomy Nature Research 9:5 (2025) 729-740
Abstract:
The James Webb Space Telescope (JWST) has spectroscopically confirmed numerous galaxies at z > 10. While weak rest-frame ultraviolet emission lines have only been seen in a handful of sources, the stronger rest-frame optical emission lines are highly diagnostic and accessible at mid-infrared wavelengths with the Mid-Infrared Instrument (MIRI) of JWST. We report the photometric detection of the distant spectroscopically confirmed galaxy JADES-GS-z14-0 at z=14.32−0.20+0.08 with MIRI at 7.7 μm. The most plausible solution for the stellar-population properties is that this galaxy contains half a billion solar masses in stars with a strong burst of star formation in the most recent few million years. For this model, at least one-third of the flux at 7.7 μm originates from the rest-frame optical emission lines Hβ and/or [O iii]λλ4959, 5007. The inferred properties of JADES-GS-z14-0 suggest rapid mass assembly and metal enrichment during the earliest phases of galaxy formation. This work demonstrates the unique power of mid-infrared observations in understanding galaxies at the redshift frontier.Deep Rest-UV JWST/NIRSpec Spectroscopy of Early Galaxies: The Demographics of C iv and N-emitters in the Reionization Era
The Astrophysical Journal American Astronomical Society 980:2 (2025) 225
Abstract:
JWST has recently discovered a subset of reionization era galaxies with ionized gas that is metal-poor in oxygen and carbon but heavily enriched in nitrogen. This abundance pattern is almost never seen in lower-redshift galaxies but is commonly observed in globular cluster stars. We have recently demonstrated that this peculiar abundance pattern appears in a compact (≃20 pc) metal-poor galaxy undergoing a strong burst of star formation. This galaxy was originally selected based on strong C iv emission, indicating a hard radiation field rarely seen locally. In this paper, we present JWST/NIRSpec observations of another reionization-era galaxy known to power strong C iv emission, the z = 7.04 gravitationally lensed galaxy A1703-zd6. The emission-line spectrum reveals this is a metal-poor galaxy ( 12+log(O/H)=7.47±0.19 ) dominated by a young stellar population ( 1.6−0.4+0.5 Myr) that powers a very hard ionizing spectrum (C iv equivalent width, EW = 19.4 Å, He ii EW = 2.2 Å). The interstellar medium is highly enriched in nitrogen ( log(N/O)=−0.6 ) with very high electron densities (8–19 × 104 cm−3) and extreme ionization conditions rarely seen at lower redshift. We also find intense CIV emission (EW ≳ 20 Å) in two new z ≳ 6 metal-poor galaxies. To put these results in context, we search for UV line emission in a sample of 737 z ≳ 4 galaxies with NIRSpec spectra, establishing that 40%(30%) of systems with [O iii]+Hβ EW > 2000 Å have N iv] (C iv) detections with EW > 5 Å(> 10 Å). These results suggest high N/O ratios, and hard ionizing sources appear in a brief phase following a burst of star formation in compact high-density stellar complexes.JADES Data Release 3: NIRSpec/Microshutter Assembly Spectroscopy for 4000 Galaxies in the GOODS Fields
The Astrophysical Journal: Supplement Series American Astronomical Society 277:1 (2025) 4
Abstract:
We present the third data release of the JWST Advanced Deep Extragalactic Survey (JADES), providing both imaging and spectroscopy in the two GOODS fields. Spectroscopy consists of medium-depth and deep NIRSpec/microshutter assembly spectra of 4000 targets, covering the spectral range 0.6–5.3 μm and observed with both the low-dispersion prism (R = 30–300) and all three medium-resolution gratings (R = 500–1500). We describe the observations, data reduction, sample selection, and target allocation. We measured 2375 redshifts (2053 from multiple emission lines); our targets span the range from z = 0.5 up to z = 13, including 404 at z > 5. The data release includes 2D and 1D fully reduced spectra, with slit-loss corrections and background subtraction optimized for point sources. We also provide redshifts and signal-to-noise ratio > 5 emission-line flux catalogs for the prism and grating spectra, and concise guidelines on how to use these data products. Alongside spectroscopy, we are also publishing fully calibrated NIRCam imaging, which enables studying the JADES sample with the combined power of imaging and spectroscopy. Together, these data provide the largest statistical sample to date to characterize the properties of galaxy populations in the first billion years after the Big Bang.Improved SED-fitting Assumptions Result in Inside-out Quenching at z ~ 0.5 and Quenching at All Radii Simultaneously at z ~ 1
The Astrophysical Journal American Astronomical Society 980:2 (2025) 168
Abstract:
Many studies conclude that galaxies quench from the inside-out by examining profiles of specific star formation rate (sSFR). These are usually measured by fitting spectral energy distributions (SEDs) assuming a fixed dust law and uniform priors on all parameters. Here, we examine the effects of more physically motivated priors: a flexible dust law, an exponential prior on the dust attenuation AV, and Gaussian priors that favor extended star formation histories. This results in model colors that better trace observations. We then perform radial SED fits to multiband flux profiles measured from Hubble Space Telescope images for 1440 galaxies at 0.4 < z < 1.5 of stellar masses 1010–1011.5M⊙ using both the traditional and the more physically motivated assumptions. The latter results in star formation rate and AV profiles that agree with measurements from spectroscopy and AV profiles that behave correctly as a function of inclination. Since green valley galaxies at z ∼ 1.3 are expected to evolve into quiescent galaxies at z ∼ 0.9, we compare their sSFR profiles using the more physically motivated assumptions. Their slopes are similar at all masses (0.06–0.08 dex kpc−1), and the normalizations for the quiescent galaxies are lower. Therefore, the sSFR profiles decline with time as quenching occurs at all radii simultaneously. We compare profiles of green valley galaxies at z ∼ 0.9 and quiescent galaxies at z ∼ 0.5. The former are shallower at all masses by ~0.1 dex kpc−1. The sSFR profiles steepen with time as galaxies quench from the inside-out. In summary, galaxies at z ∼ 1 quench at all radii simultaneously while galaxies at z ∼ 0.7 quench from the inside-out.The Relation between AGN and Host-galaxy Properties in the JWST Era. I. Seyferts at Cosmic Noon are Obscured and Disturbed
The Astrophysical Journal American Astronomical Society 978:1 (2024) 74