Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Grey Christoforo

Postdoctoral Research Assistant

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Advanced Functional Materials and Devices (AFMD) Group
  • Snaith group
grey.christoforo@physics.ox.ac.uk
Robert Hooke Building, room G24
  • About
  • Education
  • Publications

Publisher Correction: High irradiance performance of metal halide perovskites for concentrator photovoltaics

Nature Energy Springer Nature America, Inc (2018)

Authors:

Z Wang, Q Lin, B Wenger, Mark Christoforo, Y-H Lin, MT Klug, MICHAEL Johnston, LAURA Herz, HJ Snaith

Abstract:

© 2018, Springer Nature Limited. When this Article was originally published, an old version of the associated Supplementary Information file was uploaded. This has now been replaced.
More details from the publisher
More details
More details

High irradiance performance of metal halide perovskites for concentrator photovoltaics

Nature Energy Nature Publishing Group 3 (2018) 855-861

Authors:

Zhiping Wang, Qianqian Lin, Bernard Wenger, Mark Greyson Christoforo, Yen-Hung Lin, Matthew T Klug, Michael B Johnston, Laura M Herz, Henry J Snaith

Abstract:

Traditionally, III–V multi-junction cells have been used in concentrator photovoltaic (CPV) applications, which deliver extremely high efficiencies but have failed to compete with ‘flat-plate’ silicon technologies owing to cost. Here, we assess the feasibility of using metal halide perovskites for CPVs, and we evaluate their device performance and stability under concentrated light. Under simulated sunlight, we achieve a peak efficiency of 23.6% under 14 Suns (that is, 14 times the standard solar irradiance), as compared to 21.1% under 1 Sun, and measure 1.26 V open-circuit voltage under 53 Suns, for a material with a bandgap of 1.63 eV. Importantly, our encapsulated devices maintain over 90% of their original efficiency after 150 h aging under 10 Suns at maximum power point. Our work reveals the potential of perovskite CPVs, and may lead to new PV deployment strategies combining perovskites with low-concentration factor and lower-accuracy solar tracking systems.
More details from the publisher
Details from ORA
More details

The potential of multijunction perovskite solar cells

ACS Energy Letters American Chemical Society 2:10 (2017) 2506-2513

Authors:

Maximilian T Hörantner, T Leijtens, ME Ziffer, GE Eperon, Mark Christoforo, HJ Snaith

Abstract:

Metal halide perovskite semiconductors offer rapid, low-cost deposition of solar cell active layers with a wide range of band gaps, making them ideal candidates for multijunction solar cells. Here, we combine optical and electrical models using experimental inputs to evaluate the feasible performances of all-perovskite double-junction (2PJ), triple-junction (3PJ), and perovskite-perovskite-silicon triple-junction (2PSJ) solar cells. Using parameters and design constraints from the current state-of-the-art generation of perovskite solar cells, we find that 2PJs can feasibly approach 32% power conversion efficiency, 3PJs can reach 33%, and 2PSJs can surpass 35%. We also outline pathways to improve light harvesting and demonstrate that it is possible to raise the performances to 34%, 37%, and 39% for the three architectures. Additionally, we discuss important future directions of research. Finally, we perform energy yield modeling to demonstrate that the multijunction solar cells should not suffer from reduced operational performances due to discrepancies between the AM1.5G and real-world spectrum over the course of a year.
More details from the publisher
Details from ORA
More details
More details

Transient Response of Organo-Metal-Halide Solar Cells Analyzed by Time-Resolved Current-Voltage Measurements

Photonics MDPI 2:4 (2015) 1101-1115

Authors:

M Greyson Christoforo, Eric T Hoke, Michael D McGehee, Eva L Unger
More details from the publisher

Nanowire apparatuses and methods

(2015) 61708432

Authors:

EC Garnett, ML Brongersma, Y Cui, MD McGehee, MG Christoforo, W Cai

Abstract:

Aspects of the present disclosure are directed to apparatuses and methods involving nanowires having junctions therebetween. As consistent with one or more embodiments, an apparatus includes first and second sets of nanowires, in which the second set overlaps the first set. The apparatus further includes a plurality of nanowire joining recrystallization junctions, each junction including material from a nanowire of the first set that is recrystallized into an overlapping nanowire of the second set.

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet