Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Grey Christoforo

Postdoctoral Research Assistant

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Advanced Functional Materials and Devices (AFMD) Group
  • Snaith group
grey.christoforo@physics.ox.ac.uk
Robert Hooke Building, room G24
  • About
  • Education
  • Publications

Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid‐State Dye‐Sensitized Solar Cells

Advanced Energy Materials Wiley 3:12 (2013) 1657-1663

Authors:

George Y Margulis, M Greyson Christoforo, David Lam, Zach M Beiley, Andrea R Bowring, Colin D Bailie, Alberto Salleo, Michael D McGehee
More details from the publisher
More details

White OLEDs: Color in the Corners: ITO‐Free White OLEDs with Angular Color Stability (Adv. Mater. 29/2013)

Advanced Materials Wiley 25:29 (2013) 4060-4060

Authors:

Whitney Gaynor, Simone Hofmann, M Greyson Christoforo, Christoph Sachse, Saahil Mehra, Alberto Salleo, Michael D McGehee, Malte C Gather, Björn Lüssem, Lars Müller‐Meskamp, Peter Peumans, Karl Leo
More details from the publisher

Color in the corners: ITO-free white OLEDs with angular color stability.

Advanced materials (Deerfield Beach, Fla.) 25:29 (2013) 4006-4013

Authors:

Whitney Gaynor, Simone Hofmann, M Greyson Christoforo, Christoph Sachse, Saahil Mehra, Alberto Salleo, Michael D McGehee, Malte C Gather, Björn Lüssem, Lars Müller-Meskamp, Peter Peumans, Karl Leo

Abstract:

High-efficiency white OLEDs fabricated on silver nanowire-based composite transparent electrodes show almost perfectly Lambertian emission and superior angular color stability, imparted by electrode light scattering. The OLED efficiencies are comparable to those fabricated using indium tin oxide. The transparent electrodes are fully solution-processable, thin-film compatible, and have a figure of merit suitable for large-area devices.
More details from the publisher
More details
More details

Solution processed zinc oxide nanopyramid/silver nanowire transparent network films with highly tunable light scattering properties.

Nanoscale 5:10 (2013) 4400-4403

Authors:

Saahil Mehra, Mark G Christoforo, Peter Peumans, Alberto Salleo

Abstract:

Metal nanowire transparent networks are promising replacements to indium tin oxide (ITO) transparent electrodes for optoelectronic devices. While the transparency and sheet resistance are key metrics for transparent electrode performance, independent control of the film light scattering properties is important to developing multifunctional electrodes for improved photovoltaic absorption. Here we show that controlled incorporation of ZnO nanopyramids into a metal nanowire network film affords independent, highly tunable control of the scattering properties (haze) with minimal effects on the transparency and sheet resistance. Varying the zinc oxide/silver nanostructure ratios prior to spray deposition results in sheet resistances, transmission (600 nm), and haze (600 nm) of 6-30 Ω □(-1), 68-86%, and 34-66%, respectively. Incorporation of zinc oxide nanopyramid scattering agents into the conducting nanowire mesh has a negligible effect on mesh connectivity, providing a straightforward method of controlling electrode scattering properties. The decoupling of the film scattering power and electrical characteristics makes these films promising candidates for highly scattering transparent electrodes in optoelectronic devices and can be generalized to other metal nanowire films as well as carbon nanotube transparent electrodes.
More details from the publisher
More details
More details

Nanoscale Manipulation, Heating, and Welding of Nanowires

ASME Journal of Heat and Mass Transfer ASME International 134:8 (2012) 080910

Authors:

S LeBlanc, B Swartzentruber, J Martinez, G Christoforo, T Kodama, KE Goodson
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet