Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Quantum oscillations

Amalia Coldea

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum matter in high magnetic fields
amalia.coldea@physics.ox.ac.uk
Telephone: 01865 (2)82196
Clarendon Laboratory, room 251,265,264,166
orcid.org/0000-0002-6732-5964
  • About
  • Research
  • Teaching
  • Selected invited lectures
  • Prizes, awards and recognition
  • Publications

Evidence for unidirectional nematic bond ordering in FeSe

Physical Review B - Condensed Matter and Materials Physics American Physical Society (2016)

Authors:

MD Watson, TK Kim, LC Rhodes, M Eschrig, M Hoesch, AA Haghighirad, AI Coldea

Abstract:

The lifting of $d_{xz}$-$d_{yz}$ orbital degeneracy is often considered a hallmark of the nematic phase of Fe-based superconductors, including FeSe, but its origin is not yet understood. Here we report a high resolution Angle-Resolved Photoemission Spectroscopy study of single crystals of FeSe, accounting for the photon-energy dependence and making a detailed analysis of the temperature dependence. We find that the hole pocket undergoes a fourfold-symmetry-breaking distortion in the nematic phase below 90~K, but in contrast the changes to the electron pockets do not require fourfold symmetry-breaking. Instead, there is an additional separation of the existing $d_{xy}$ and $d_{xz/yz}$ bands - which themselves are not split within resolution. These observations lead us to propose a new scenario of "unidirectional nematic bond ordering" to describe the low-temperature electronic structure of FeSe, supported by a good agreement with 10-orbital tight binding model calculations.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Modeling the angle-dependent magnetoresistance oscillations of Fermi surfaces with hexagonal symmetry

Physical Review B - Condensed Matter and Materials Physics American Physical Society (2016)

Authors:

JCA Prentice, AI Coldea
More details from the publisher

Modelling the angle-dependent magnetoresistance oscillations of Fermi surfaces with hexagonal symmetry

(2016)

Authors:

Joseph CA Prentice, Amalia I Coldea
More details from the publisher

Modeling the angle-dependent magnetoresistance oscillations of Fermi surfaces with hexagonal symmetry

Physical Review B American Physical Society 93:24 (2016) 245105

Authors:

Joseph CA Prentice, Amalia Coldea

Abstract:

By solving the Boltzmann transport equation we investigate theoretically the general form of oscillations in the resistivity caused by varying the direction of an applied magnetic field for the case of quasi-two dimensional systems on hexagonal lattices. The presence of the angular magnetoresistance oscillations can be used to map out the topology of the Fermi surface and we study how this effect varies as a function of the degree of interplane warping as well as a function of the degree of isotropic scattering. We find that the angular dependent effect due to in-plane rotation follows the symmetry imposed by the lattice whereas for inter-plane rotation the degree of warping dictates the dominant features observed in simulations. Our calculations make predictions for specific angle-dependent magnetotransport signatures in magnetic fields expected for quasi-two dimensional hexagonal compounds similar to PdCoO2 and PtCoO2.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Evidence for unidirectional nematic bond ordering in FeSe

(2016)

Authors:

MD Watson, TK Kim, LC Rhodes, M Eschrig, M Hoesch, AA Haghighirad, AI Coldea
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Current page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet