Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Quantum oscillations

Amalia Coldea

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum matter in high magnetic fields
amalia.coldea@physics.ox.ac.uk
Telephone: 01865 (2)82196
Clarendon Laboratory, room 251,265,264,166
orcid.org/0000-0002-6732-5964
  • About
  • Research
  • Teaching
  • Selected invited lectures
  • Prizes, awards and recognition
  • Publications

Cascade of field-induced magnetic transitions in a frustrated antiferromagnetic metal

(2014)

Authors:

AI Coldea, L Seabra, A McCollam, A Carrington, L Malone, AF Bangura, D Vignolles, PG van Rhee, RD McDonald, T Sorgel, M Jansen, N Shannon, R Coldea
More details from the publisher

Cascade of field-induced magnetic transitions in a frustrated antiferromagnetic metal

Physical Review B American Physical Society (APS) 90:2 (2014) 020401

Authors:

AI Coldea, L Seabra, A McCollam, A Carrington, L Malone, AF Bangura, D Vignolles, PG van Rhee, RD McDonald, T Sörgel, M Jansen, N Shannon, R Coldea
More details from the publisher
Details from ArXiV

Field-induced magnetic transitions in Ca10(Pt3As8)((Fe1−xPtx)2As2)5 compounds

Phys. Rev. B 89, 205136 (2014) American Physical Society 89:20 (2014) 205136-205136

Authors:

MD Watson, A McCollam, SF Blake, D Vignolles, L Drigo, II Mazin, D Guterding, HO Jeschke, R Valentí, N Ni, R Cava, AI Coldea
More details from the publisher

Field-induced nematic-like magnetic transition in an iron pnictide superconductor, Ca$_{10}$(Pt$_{3}$As$_{8}$)((Fe$_{1-x}$Pt$_{x}$)$_{2}$As$_{2}$)$_{5}$

(2013)

Authors:

MD Watson, A McCollam, SF Blake, D Vignolles, L Drigo, II Mazin, D Guterding, HO Jeschke, R Valenti, N Ni, R Cava, AI Coldea
More details from the publisher

Field-induced nematic-like magnetic transition in an iron pnictide superconductor, Ca$_{10}$(Pt$_{3}$As$_{8}$)((Fe$_{1-x}$Pt$_{x}$)$_{2}$As$_{2}$)$_{5}$

ArXiv 1310.3728 (2013)

Authors:

MD Watson, A McCollam, SF Blake, D Vignolles, L Drigo, II Mazin, D Guterding, HO Jeschke, R Valenti, N Ni, R Cava, AI Coldea

Abstract:

We report a high magnetic field study up to 55 T of the nearly optimally doped iron-pnictide superconductor Ca$_{10}$(Pt$_{3}$As$_{8}$) ((Fe$_{1-x}$Pt$_{x}$)$_{2}$As$_{2}$)$_{5}$ (x=0.078(6)) with a Tc 10 K using magnetic torque, tunnel diode oscillator technique and transport measurements. We determine the superconducting phase diagram, revealing an anisotropy of the irreversibility field up to a factor of 10 near Tc and signatures of multiband superconductivity. Unexpectedly, we find a spin-flop like anomaly in magnetic torque at 22 T, when the magnetic field is applied perpendicular to the ab planes, which becomes significantly more pronounced as the temperature is lowered to 0.33 K. As our superconducting sample lies well outside the antiferromagnetic region of the phase diagram, the observed field-induced transition in torque indicates a spin-flop transition not of long-range ordered moments, but of nematic-like antiferromagnetic fluctuations.
Details from ArXiV
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Current page 20
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet