Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Professor Andrew Daley

Professor of Quantum Physics

Research theme

  • Quantum information and computation
  • Quantum optics & ultra-cold matter

Sub department

  • Atomic and Laser Physics

Research groups

  • Theory of quantum systems
andrew.daley@physics.ox.ac.uk
Clarendon Laboratory, room 316.3
  • About
  • Publications

Controlling Quantum Transport via Dissipation Engineering.

Physical review letters 123:18 (2019) 180402

Authors:

François Damanet, Eduardo Mascarenhas, David Pekker, Andrew J Daley

Abstract:

Inspired by the microscopic control over dissipative processes in quantum optics and cold atoms, we develop an open-system framework to study dissipative control of transport in strongly interacting fermionic systems, relevant for both solid-state and cold-atom experiments. We show how subgap currents exhibiting multiple Andreev reflections-the stimulated transport of electrons in the presence of Cooper pairs-can be controlled via engineering of superconducting leads or superfluid atomic gases. Our approach incorporates dissipation within the channel, which is naturally occurring and can be engineered in cold gas experiments. This opens opportunities for engineering many phenomena with transport in strongly interacting systems. As examples, we consider particle loss and dephasing, and note different behavior for currents with different microscopic origin. We also show how to induce nonreciprocal electron and Cooper-pair currents.
More details from the publisher
More details
More details

Randomized Benchmarking in the Analogue Setting

(2019)

Authors:

Ellen Derbyshire, Jorge Yago Malo, Andrew Daley, Elham Kashefi, Petros Wallden
More details from the publisher
Details from ArXiV

Enhanced localization and protection of topological edge states due to geometric frustration

Physical Review B American Physical Society (APS) 100:12 (2019) 125123

Authors:

L Madail, S Flannigan, AM Marques, AJ Daley, RG Dias
More details from the publisher
More details

Excitation Modes of Bright Matter-Wave Solitons.

Physical review letters 123:12 (2019) 123602

Authors:

Andrea Di Carli, Craig D Colquhoun, Grant Henderson, Stuart Flannigan, Gian-Luca Oppo, Andrew J Daley, Stefan Kuhr, Elmar Haller

Abstract:

We experimentally study the excitation modes of bright matter-wave solitons in a quasi-one-dimensional geometry. The solitons are created by quenching the interactions of a Bose-Einstein condensate of cesium atoms from repulsive to attractive in combination with a rapid reduction of the longitudinal confinement. A deliberate mismatch of quench parameters allows for the excitation of breathing modes of the emerging soliton and for the determination of its breathing frequency as a function of atom number and confinement. In addition, we observe signatures of higher-order solitons and the splitting of the wave packet after the quench. Our experimental results are compared to analytical predictions and to numerical simulations of the one-dimensional Gross-Pitaevskii equation.
More details from the publisher
More details
More details

Treelike Interactions and Fast Scrambling with Cold Atoms.

Physical review letters 123:13 (2019) 130601

Authors:

Gregory Bentsen, Tomohiro Hashizume, Anton S Buyskikh, Emily J Davis, Andrew J Daley, Steven S Gubser, Monika Schleier-Smith

Abstract:

We propose an experimentally realizable quantum spin model that exhibits fast scrambling, based on nonlocal interactions that couple sites whose separation is a power of 2. By controlling the relative strengths of deterministic, nonrandom couplings, we can continuously tune from the linear geometry of a nearest-neighbor spin chain to an ultrametric geometry in which the effective distance between spins is governed by their positions on a tree graph. The transition in geometry can be observed in quench dynamics, and is furthermore manifest in calculations of the entanglement entropy. Between the linear and treelike regimes, we find a peak in entanglement and exponentially fast spreading of quantum information across the system. Our proposed implementation, harnessing photon-mediated interactions among cold atoms in an optical cavity, offers a test case for experimentally observing the emergent geometry of a quantum many-body system.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet