Treelike Interactions and Fast Scrambling with Cold Atoms.
Physical review letters 123:13 (2019) 130601
Abstract:
We propose an experimentally realizable quantum spin model that exhibits fast scrambling, based on nonlocal interactions that couple sites whose separation is a power of 2. By controlling the relative strengths of deterministic, nonrandom couplings, we can continuously tune from the linear geometry of a nearest-neighbor spin chain to an ultrametric geometry in which the effective distance between spins is governed by their positions on a tree graph. The transition in geometry can be observed in quench dynamics, and is furthermore manifest in calculations of the entanglement entropy. Between the linear and treelike regimes, we find a peak in entanglement and exponentially fast spreading of quantum information across the system. Our proposed implementation, harnessing photon-mediated interactions among cold atoms in an optical cavity, offers a test case for experimentally observing the emergent geometry of a quantum many-body system.Enhanced Superexchange in a Tilted Mott Insulator
(2019)
Collisionally inhomogeneous Bose-Einstein condensates with a linear interaction gradient
(2019)
Reservoir engineering of Cooper-pair-assisted transport with cold atoms
(2019)
Quantum magnetism with ultracold bosons carrying orbital angular momentum
Physical Review A American Physical Society (APS) 100:2 (2019) 023615