Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Part of a WEAVE fibre configuration

Part of the WEAVE focal plane showing optical fibres positioned on a set of targets in the telescope focal plane.

Prof Gavin Dalton

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Extremely Large Telescope
Gavin.Dalton@physics.ox.ac.uk
  • About
  • Research
  • Publications

Commissioning the VISTA IR camera

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

GB Dalton, WJ Sutherland, JP Emerson, GFW Woodhouse, DL Terrett, MS Whalley

Abstract:

VISTA was designed as a survey facility, and was optimized for use with the 64Mpix VISTA IR Camera in the sense that the optical system of the instrument and telescope was designed as a single entity. The commissioning of the IR camera therefore formed a major part of the system integration and commissioning of the whole VISTA system. We describe some aspects of the commissioning process for VISTA, the interplay between the camera and telescope systems, and summarize the results of the verification phase. © 2010 Copyright SPIE - The International Society for Optical Engineering.
More details from the publisher
More details

Design drivers for a wide-field multi-object spectrograph for the William Herschel Telescope

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

M Balcells, CR Benn, D Carter, GB Dalton, SC Trager, S Feltzing, MAW Verheijen, M Jarvis, W Percival, DC Abrams, T Agocs, AGA Brown, D Cano, C Evans, A Helmi, IJ Lewis, R McLure, RF Peletier, I Pérez-Fournon, RM Sharples, IAJ Tosh, I Trujillo, N Walton, KB Westhall

Abstract:

Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4.2-m William Herschel Telescope (WHT) on La Palma. The instrument intends to take advantage of a future prime-focus corrector and atmospheric-dispersion corrector (Agocs et al, this conf.) that will deliver a field of view 2 deg in diameter, with good throughput from 370 to 1,000 nm. The science programs cluster into three groups needing three different resolving powers R: (1) high-precision radial-velocities for Gaia-related Milky Way dynamics, cosmological redshift surveys, and galaxy evolution studies (R = 5,000), (2) galaxy disk velocity dispersions (R = 10,000) and (3) high-precision stellar element abundances for Milky Way archaeology (R = 20,000). The multiplex requirements of the different science cases range from a few hundred to a few thousand, and a range of fibre-positioner technologies are considered. Several options for the spectrograph are discussed, building in part on published design studies for E-ELT spectrographs. Indeed, a WHT MOS will not only efficiently deliver data for exploitation of important imaging surveys planned for the coming decade, but will also serve as a test-bed to optimize the design of MOS instruments for the future E-ELT. © 2010 Copyright SPIE - The International Society for Optical Engineering.
More details from the publisher
Details from ArXiV

FMOS the fibre multiple-object spectrograph, part VIII: Current performances and results of the engineering observations

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

M Kimura, M Akiyama, GB Dalton, F Iwamuro, IJ Lewis, T Maihara, K Ohta, P Tait, N Takato, N Tamura, IAJ Tosh, S Smedley, E Curtis Lake, T Inagaki, E Jeschke, K Kawate, Y Moritani, M Sumiyoshi, K Yabe

Abstract:

The Fibre Multi-Object Spectrograph for Subaru Telescope (FMOS) is a near-infrared instrument with 400 fibres in a 30' filed of view at F/2 prime focus. To observe 400 objects simultaneously, we have developed a fibre positioner called "Echidna" using a tube piezo actuator. We have also developed two OH-airglow suppressed and refrigerated spectrographs. Each spectrograph has two spectral resolution modes: the low-resolution mode and the high-resolution mode. The low-resolution mode covers the complete wavelength range of 0.9 - 1.8 μm with one exposure, while the high-resolution mode requires four exposures at different camera positions to cover the full wavelength range. The first light was accomplished in May 2008. The science observations and the open-use observations begin in May 2010. © 2010 Copyright SPIE - The International Society for Optical Engineering.
More details from the publisher
More details

OPTIMOS-EVE design trade-off analysis

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

F Chemla, G Dalton, I Guinouard, J Pragt, E Sawyer, P Spanò, IA Tosh, MI Andersen, R Navarro, F Hammer, L Kaper

Abstract:

OPTIMOS-EVE (OPTical Infrared Multi Object Spectrograph - Extreme Visual Explorer) is the fiber fed multi object spectrograph proposed for the E-ELT. It is designed to provide a spectral resolution ranging from 5000 to 30.000, at wavelengths from 0.37 μm to 1.70 μm, combined with a high multiplex (>200) and a large spectral coverage. The system consists of three main modules: a fiber positioning system, fibers and a spectrograph. The OPTIMOS-EVE Phase-A study, carried out within the framework of the ESO E-ELT instrumentation studies, has been performed by an international consortium consisting of institutes from France, Netherlands, United Kingdom, Italy and Denmark. This paper describes the design tradeoff study and the key issues determining the price and performance of the instrument. © 2010 Copyright SPIE - The International Society for Optical Engineering.
More details from the publisher

Overview of the GYES instrument: A multifibre high-resolution spectrograph for the prime focus of the Canada-France-Hawaii Telescope

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

S Mignot, M Cohen, G Dalton, JL Dournaux, G Fasola, I Guinouard, D Horville, JM Huet, P Laporte, I Lewis, F Royer

Abstract:

ESA's cornerstone mission Gaia will construct a billion-star catalogue down to magnitude 20 but will only provide detailed chemical information for the brighter stars and will be lacking radial velocity at the faint end due to insufficient Signal-to-Noise Ratios (SNR). This calls for the deployment of a ground spectrograph under time scales coherent with those of Gaia for a complementary survey. The GYES instrument is a high resolution (∼ 20,000) spectrometer proposed for installation on the Canada- France-Hawaii Telescope (CFHT) to perform this survey in the northern hemisphere. It exploits the large Field of View (FoV) available at the prime focus together with a high multiplex (∼ 500 fibres) to achieve a SNR of 30 in two hours at magnitude 16 and render the survey possible on the order of 300 nights. The on-going feasibility study aims at jointly optimising all components of the system: the field corrector, the positioner, the fibres and the spectrograph. The key challenges consist in accommodating the components in the highly constrained environment of the primary focus, as well as in achieving maximum efficiency thanks to high transmission and minimum reconfiguration delays. Meanwhile, for GYES to have its first light at the time of Gaia's initial data release (2014-2015), it is mandatory to keep its complexity down by designing a predominantly passive instrument. © 2010 Copyright SPIE - The International Society for Optical Engineering.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • Current page 36
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet