Comparing gc and field LMXBs in elliptical galaxies with deep chandra and hubble data
Astrophysical Journal 703:1 (2009) 829-844
Abstract:
We present a statistical study of the low-mass X-ray binary (LMXB) populations of three nearby, old elliptical galaxies: NGC 3379, NGC 4278, and NGC 4697. With a cumulative 1 Ms Chandra ACIS observing time, we detect 90-170 LMXBs within the D25 ellipse of each galaxy. Cross-correlating Chandra X-ray sources and HST optical sources, we identify 75 globular cluster (GC) LMXBs and 112 field LMXBs with LX > 1036 erg s-1 (detections of these populations are 90% complete down to luminosities in the range of 6 × 1036 to 1.5 × 10 37ergs-1). At the higher luminosities explored in previous studies, the statistics of this sample are consistent with the properties of GC-LMXBs reported in the literature. In the low-luminosity range allowed by our deeper data (LX < 5 × 1037 erg s-1), we find a significant relative lack of GC-LMXBs, when compared with field sources. Using the co-added sample from the three galaxies, we find that the incompleteness-corrected X-ray luminosity functions (XLFs) of GC and field LMXBs differ at 4σ significance at LX < 5 × 1037 erg s-1. As previously reported, these XLFs are consistent at higher luminosities. The presently available theoretical models for LMXB formation and evolution in clusters are not sophisticated enough to provide a definite explanation for the shape of the observed GC-LMXB XLF. Our observations may indicate a potential predominance of GC-LMXBs with donors evolved beyond the main sequence, when compared to current models, but their efficient formation requires relatively high initial binary fractions in clusters. The field LMXB XLF can be fitted with either a single power-law model plus a localized excess at a luminosity of (5-6) × 1037 erg s-1, or a broken power law with a similar low-luminosity break. This XLF may be explained with NS-red-giant LMXBs, contributing to 15% of total LMXBs population at 5 × 1037 erg s-1. The difference in the GC and field XLFs is consistent with different origins and/or evolutionary paths between the two LMXB populations, although a fraction of the field sources are likely to have originated in GCs. © 2009 The American Astronomical Society. All rights reserved.Determination of masses of the central black holes in NGC 524 and 2549 using laser guide star adaptive optics
Monthly Notices of the Royal Astronomical Society 399:4 (2009) 1839-1857
Abstract:
We present observations of early-type galaxies NGC 524 and 2549 with laser guide star adaptive optics (LGS AO) obtained at GEMINI North telescope using the Near-infrared Integral Field Spectrograph (NIFS) integral field unit (IFU) in the K band. The purpose of these observations is to determine high spatial resolution stellar kinematics within the nuclei of these galaxies and, in combination with previously obtained large-scale observations with the SAURON IFU, to determine the masses (M•) of the supermassive black holes (SMBH). The targeted galaxies were chosen to have central light profiles showing a core (NGC 524) and a cusp (NGC 2549), to probe the feasibility of using the galaxy centre as the natural guide source required for LGS AO. We employ an innovative technique where the focus compensation due to the changing distance to the sodium layer is made 'open loop', allowing the extended galaxy nucleus to be used only for tip-tilt correction. The data have spatial resolution of 0.23 and 0.17 arcsec full-width at half maximum (FWHM), where at least ∼40 per cent of flux comes within 0.2, showing that high quality LGS AO observations of these objects are possible. The achieved signal-to-noise ratio (S/N ∼ 50) is sufficiently high to reliably determine the shape of the line-of-sight velocity distribution. We construct axisymmetric three-integral dynamical models which are constrained with both the NIFS and SAURON data. The best-fitting models yield M• = (8.3+2.7-1.3) × 108 M⊙ and (M/L)I = 5.8 ± 0.4 for NGC 524 and M• = (1.4 +0.2-1.3) × 107 M⊙ and (M/L)R = 4.7 ± 0.2 for NGC 2549 (all errors are at the 3σ level). We demonstrate that the wide-field SAURON data play a crucial role in the M/L determination increasing the accuracy of M/L by a factor of at least 5, and constraining the upper limits on black hole masses. The NIFS data are crucial in constraining the lower limits of M• and in combination with the large-scale data reducing the uncertainty by a factor of 2 or more. We find that the orbital structure of NGC 524 shows significant tangential anisotropy, while at larger radii both galaxies are consistent with having almost perfectly oblate velocity ellipsoids. Tangential anisotropy in NGC 524 coincides with the size of SMBH sphere of influence and the core region in the light profile. This agrees with predictions from numerical simulations where core profiles are the result of SMBH binaries evacuating the centre nuclear regions following a galaxy merger. However, being a disc dominated fast rotating galaxy, NGC 524 has probably undergone through a more complex evolution. We test the accuracy to which M• can be measured using seeings obtained from typical LGS AO observations, and conclude that for a typical conditions and M• the expected uncertainty is of the order of 50 per cent. © 2009 RAS.The SAURON Project - XIV. No escape from Vesc : A global and local parameter in early-type galaxy evolution
Monthly Notices of the Royal Astronomical Society 398:4 (2009) 1835-1857
Abstract:
We present the results of an investigation of the local escape velocity (Vesc) - line strength index relationship for 48 early-type galaxies from the SAURON sample, the first such study based on a large sample of galaxies with both detailed integral field observations and extensive dynamical modelling. Values of Vesc are computed using multi-Gaussian expansion (MGE) photometric fitting and axisymmetric, anisotropic Jeans' dynamical modelling simultaneously on Hubble Space Telescope and ground-based images. We determine line strengths and escape velocities at multiple radii within each galaxy, allowing an investigation of the correlation within individual galaxies as well as amongst galaxies. We find a tight correlation between Vesc and the line-strength indices. For Mgb, we find that this correlation exists not only between different galaxies but also inside individual galaxies - it is both a local and global correlation. The Mgb-Vesc relation has the form: log(Mgb/4 Å) = (0.32 ± 0.03) log(Vesc/500 km s-1) - (0.031 ± 0.007) with an rms scatter σ = 0.033. The relation within individual galaxies has the same slope and offset as the global relation to a good level of agreement, though there is significant intrinsic scatter in the local gradients. We transform our line strength index measurements to the single stellar population (SSP) equivalent ages (t), metallicity ([Z/H]) and enhancement ([α/Fe]) and carry out a principal component analysis of our SSP and Vesc data. We find that in this four-dimensional parameter space the galaxies in our sample are to a good approximation confined to a plane, given by log (V esc/500 km s -1) = 0.85 [Z/H] + 0.43 log (t/Gyr) - 0.29. It is surprising that a combination of age and metallicity is conserved; this may indicate a 'conspiracy' between age and metallicity or a weakness in the SSP models. How the connection between stellar populations and the gravitational potential, both locally and globally, is preserved as galaxies assemble hierarchically may provide an important constraint on modelling. © 2009 RAS.The SAURON project - XIII. SAURON-GALEX study of early-type galaxies: The ultraviolet colour-magnitude relations and Fundamental Planes
Monthly Notices of the Royal Astronomical Society 398:4 (2009) 2028-2048
Abstract:
We present Galaxy Evolution Explorer far-ultraviolet (FUV) and near-ultraviolet (NUV) imaging of 34 nearby early-type galaxies from the SAURON representative sample of 48 E/S0 galaxies, all of which have ground-based optical imaging from the MDM Observatory. The surface brightness profiles of nine galaxies (≈26 per cent) show regions with blue UV-optical colours suggesting RSF. Five of these (≈15 per cent) show blue integrated UV-optical colours that set them aside in the NUV integrated colour-magnitude relation. These are objects with either exceptionally intense and localized NUV fluxes or blue UV-optical colours throughout. They also have other properties confirming they have had RSF, in particular Hβ absorption higher than expected for a quiescent population and a higher CO detection rate. This suggests that residual star formation is more common in early-type galaxies than we are used to believe. NUV blue galaxies are generally drawn from the lower stellar velocity dispersion (σe < 200 km s-1) and thus lower dynamical mass part of the sample. We have also constructed the first UV Fundamental Planes and show that NUV blue galaxies bias the slopes and increase the scatters. If they are eliminated, the fits get closer to expectations from the virial theorem. Although our analysis is based on a limited sample, it seems that a dominant fraction of the tilt and scatter of the UV Fundamental Planes is due to the presence of young stars in preferentially low-mass early-type galaxies. Interestingly, the UV-optical radial colour profiles reveal a variety of behaviours, with many galaxies showing signs of RSF, a central UV-upturn phenomenon, smooth but large-scale age and metallicity gradients and in many cases a combination of these. In addition, FUV-NUV and FUV-V colours even bluer than those normally associated with UV-upturn galaxies are observed at the centre of some quiescent galaxies. Four out of the five UV-upturn galaxies are slow rotators. These objects should thus pose interesting challenges to stellar evolutionary models of the UV upturn. © 2009 RAS.Transient low-mass X-ray binary populations in elliptical galaxies NGC3379 and NGC4278
Astrophysical Journal 702:2 PART 2 (2009)