Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Roger Davies

Emeritus Wetton Professor

Research theme

  • Astronomy and astrophysics
  • Instrumentation

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • Rubin-LSST
  • Extremely Large Telescope
Roger.Davies@physics.ox.ac.uk
  • About
  • Publications

DIVISION VIII: GALAXIES AND THE UNIVERSE

Proceedings of the International Astronomical Union Cambridge University Press (CUP) 4:T27A (2008) 283-285

Authors:

Sadanori Okamura, Elaine Sadler, Francesco Bertola, Mark Birkinshaw, Françoise Combes, Roger L Davies, Thanu Padmanabhan, Rachel L Webster
More details from the publisher

Deep chandra monitoring observations of NGC 3379: Catalog of source properties

Astrophysical Journal, Supplement Series 179:1 (2008) 142-165

Authors:

NJ Brassington, G Fabbiano, DW Kim, A Zezas, S Zepf, A Kundu, L Angelini, RL Davies, J Gallagher, V Kalogera, T Fragos, AR King, S Pellegrini, G Trinchieri

Abstract:

We present the properties of the discrete X-ray sources detected in our monitoring program of the 'typical' elliptical galaxy, NGC 3379, observed with Chandra ACIS-S in five separate pointings, resulting in a co-added exposure of 324 ks. From this deep observation, 132 sources have been detected within the region overlapped by all observations, 98 of which lie within the D25 ellipse of the galaxy. These 132 sources range in LX from 6 × 1035 erg s-1 (with 3 σ upper limit ≤4 × 1036 erg s-1) to ∼2 × 1039 erg s -1, including one source with LX > 1 × 10 39 erg s-1, which has been classified as a ULX. From optical data, 10 X-ray sources have been determined to be coincident with a globular cluster, these sources tend to have high X-ray luminosity, with three of these sources exhibiting LX > 1 × 1038 erg s-1. From X-ray source photometry, it has been determined that the majority of the 132 sources that have well constrained colors, have values that are consistent with typical LMXB spectra. In addition to this, a subpopulation of 10 sources has been found to exhibit very hard spectra and it is expected that most of these sources are absorbed background AGN. There are 64 sources in this population that exhibit long-term variability, indicating that they are accreting compact objects. Five of these sources have been identified as transient candidates, with a further 3 possible transients. Spectral variations have also been identified in the majority of the source population, where a diverse range of variability has been identified, indicating that there are many different source classes located within this galaxy. © 2008. The American Astronomical Society. All rights reserved.
More details from the publisher
More details

Models for low-mass X-ray binaries in the elliptical galaxies NGC 3379 and NGC 4278: Comparison with observations

Astrophysical Journal 683:1 (2008) 346-356

Authors:

T Fragos, V Kalogera, K Belczynski, G Fabbiano, DW Kim, NJ Brassington, L Angelini, RL Davies, JS Gallagher, AR King, S Pellegrini, G Trinchieri, SE Zepf, A Kundu, A Zezas

Abstract:

We present theoretical models for the formation and evolution of populations of low-mass X-ray binaries (LMXBs) in the two elliptical galaxies NGC 3379 and NGC 4278. The models are calculated with the recently updated StarTrack code, assuming only a primordial galactic field LMXB population. StarTrack is an advanced population synthesis code that has been tested and calibrated using detailed binary star calculations and incorporates all the important physical processes of binary evolution. The simulations are targeted to modeling and understanding the origin of the X-ray luminosity functions (XLFs) of point sources in these galaxies. For the first time we explore the population XLF in luminosities below 1037 ergs s-1, as probed by the most recent observational results. We consider models for the formation and evolution of LMXBs in galactic fields with different CE efficiencies, stellar wind prescriptions, magnetic braking laws, and IMFs. We identify models that produce XLFs consistent with the observations both in shape and absolute normalization, suggesting that a primordial galactic field LMXB population can make a significant contribution to the total population of an elliptical galaxy. We also find that the treatment of the outburst luminosity of transient systems remains a crucial factor for the determination of the XLF, since the modeled populations are dominated by transient X-ray systems. © 2008. The American Astronomical Society. All rights reserved.
More details from the publisher
More details

The SAURON project - XII. Kinematic substructures in early-type galaxies: Evidence for discs in fast rotators

Monthly Notices of the Royal Astronomical Society 390:1 (2008) 93-117

Authors:

D Krajnović, R Bacon, M Cappellari, RL Davies, PT De Zeeuw, E Emsellem, J Falcón-Barroso, H Kuntschner, RM McDermid, RF Peletier, M Sarzi, RCE Van Den Bosch, G Van De Ven

Abstract:

We analysed two-dimensional maps of 48 early-type galaxies obtained with the SAURON and OASIS integral-field spectrographs using kinemetry, a generalization of surface photometry to the higher order moments of the line-of-sight velocity distribution (LOSVD). The maps analysed include: reconstructed image, mean velocity, velocity dispersion, h3 and h4 Gauss-Hermite moments. Kinemetry is a good method to recognize structures otherwise missed by using surface photometry, such as embedded discs and kinematic subcomponents. In the SAURON sample, we find that 31 per cent of early-type galaxies are single component systems. 91 per cent of the multicomponents systems have two kinematic subcomponents, the rest having three. In addition, 29 per cent of galaxies have kinematically decoupled components, nuclear components with significant kinematic twists. We differentiate between slow and fast rotators using velocity maps only and find that fast-rotating galaxies contain discs with a large range in mass fractions to the main body. Specifically, we find that the velocity maps of fast rotators closely resemble those of inclined discs, except in the transition regions between kinematic subcomponents. This deviation is measured with the kinemetric k 5/k1 ratio, which is large and noisy in slow rotators and about 2 per cent in fast rotators. In terms of E/S0 classification, this means that 74 per cent of Es and 92 per cent of S0s have components with disc-like kinematics. We suggest that differences in k5/k1 values for the fast and slow rotators arise from their different intrinsic structure which is reflected on the velocity maps. For the majority of fast rotators, the kinematic axial ratios are equal to or less than their photometric axial ratios, contrary to what is predicted with isotropic Jeans models viewed at different inclinations. The position angles of fast rotators are constant, while they vary abruptly in slow rotators. Velocity dispersion maps of face-on galaxies have shapes similar to the distribution of light. Velocity dispersion maps of the edge-on fast rotators and all slow rotators show differences which can only be partially explained with isotropic models and, in the case of fast rotators, often require additional cold components. We constructed local (bin-by-bin) h3-V/σ and h4-V/σ diagrams from SAURON observations. We confirm the classical anticorrelation of h3 and V/σ, but we also find that h3 is almost zero in some objects or even weakly correlated with V/σ. The distribution of h4 for fast and slow rotators is mildly positive on average. In general, fast rotators contain flattened components characterized by a disc-like rotation. The difference between slow and fast rotators is traceable throughout all moments of the LOSVD, with evidence for different intrinsic shapes and orbital contents and, hence, likely different evolutionary paths. © 2008 RAS.
More details from the publisher
More details

Calibration of the KMOS Multi-Field Imaging Spectrometer

ESO Astrophysics Symposia Springer Nature (2008) 319-324

Authors:

SK Ramsay, S Rolt, RM Sharples, R Davies
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • Current page 38
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet