Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Roger Davies

Emeritus Wetton Professor

Research theme

  • Astronomy and astrophysics
  • Instrumentation

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • Rubin-LSST
  • Extremely Large Telescope
Roger.Davies@physics.ox.ac.uk
  • About
  • Publications

Stellar populations of decoupled cores in E/S0 galaxies with sauron and oasis

Proceedings of the International Astronomical Union 2:S241 (2006) 399-403

Authors:

RM McDermid, E Emsellem, KL Shapiro, R Bacon, M Bureau, M Cappellari, RL Davies, T De Zeeuw, J Falcón-Barroso, D Krajnović, H Kuntschner, RF Peletier, M Sarzi

Abstract:

We summarize results from McDermid et al. (2006), who present a set of follow-up observations of the sauron representative survey of early-type galaxies. We used the oasis integral-field spectrograph (while at the Canada-France-Hawaii Telescope) to obtain high spatial resolution spectra of 28 elliptical and lenticular galaxies. These seeing-limited data have on average twice the spatial resolution of the sauron data, albeit over a smaller field. These new data reveal previously unresolved features in these objects' stellar kinematics, stellar populations, and ionized gas properties. In this contribution, we focus on the discovery of a population of compact kinematically decoupled cores in a number of our sample galaxies. These compact cores are related to regions of young stars, and counter-rotate around the host galaxy's minor axis. We compare these objects to previously known decoupled components, which in contrast are composed of old stars, and which rotate around axes unrelated to the host galaxy's kinematics or shape. A key difference between these two kinds of decoupled cores are their physical size and relative mass. The compact decoupled cores are smaller than a few hundred parsec, and constitute less than a few percent of the total galaxy mass. The classical decoupled cores exist on kiloparsec scales, and comprise around a factor 10 more mass. We suggest that the small components are only found with young ages because of their low mass-to-light ratio. We show that after a few Gyrs, these components fade into the background galaxy, making them more difficult to detect. We draw the following conclusions: 1) young stars found in early-type galaxies are very often associated with centrally-concentrated counter-rotating components; 2) the small mass fraction and kinematic decoupling of these cores suggests that the star formation is associated to minor accretion events, which effectively drive the spread in luminosity-weighted ages found in early-type galaxies; and 3) such decoupled components may be common in all early-type galaxies, but not directly observed due to their small contribution to the total galaxy light at older ages. © 2007 International Astronomical Union.
More details from the publisher

The nature of galactic bulges from SAURON absorption line strength maps

Proceedings of the International Astronomical Union 2:S241 (2006) 485-488

Authors:

RF Peletier, J Falcón-Barroso, K Ganda, R Bacon, M Cappellari, RL Davies, PT De Zeeuw, E Emsellem, D Krajnović, H Kuntschner, RM McDermid, M Sarzi, G Van De Ven

Abstract:

We discuss SAURON absorption line strength maps of a sample of 24 early-type spirals, mostly Sa. From the Lick indices H, Mgb and Fe 5015 we derive SSP-ages and metallicities. By comparing the scaling relations of Mg b and H and central velocity dispersion with the same relation for the edge-on sample of Falcn-Barroso et al. (2002) we derive a picture in which the central regions of Sa galaxies contain at least 2 components: one (or more) thin, disc-like component, often containing recent star formation, and another, elliptical-like component, consisting of old stars and rotating more slowly, dominating the light above the plane. If one defines a bulge to be the component responsible for the light in excess of the outer exponential disc, then many Sa-bulges are dominated by a thin, disc-like component containing recent star formation. © 2007 International Astronomical Union.
More details from the publisher

The modulated emission of the ultraluminous X-ray source in NGC 3379

Astrophysical Journal 650:2 I (2006) 879-884

Authors:

G Fabbiano, DW Kim, T Fragos, V Kalogera, AR King, L Angelini, RL Davies, JS Gallagher, S Pellegrini, G Trinchieri, SE Zepf, A Zezas

Abstract:

We report recent Chandra observations of the ULX in the elliptical galaxy NGC 3379 that clearly detect two flux variability cycles. Comparing these data with the Chandra observation of ∼5 years ago, we measure a flux modulation with a period of ∼12.6 hr. Moreover, we find that the emission undergoes a correlated spectral modulation, becoming softer at low flux. We argue that our results establish this source as a ULX binary in NGC 3379. Given the old stellar population of this galaxy, the ULX is likely to be a soft transient; however, historical X-ray sampling suggests that the current "on" phase has lasted ∼10yr. We discuss our results in terms of ADC and wind-feedback models. If the flux modulation is orbital, we can constrain the donor mass and orbital period at the onset of mass transfer within 1.15-1.4 Ṁ and 12.5-17 hr, respectively. The duration of the mass transfer phase so far is probably ∼ 1 Gyr, and the binary has been a soft X-ray transient throughout this time. These constraints are insensitive to the mass of the accretor. © 2006. The American Astronomical Society. All rights reserved.
More details from the publisher

The fundamental plane in RX J0142.0+2131: A galaxy cluster merger at z = 0.28

Astrophysical Journal 649:1 II (2006)

Authors:

J Barr, I Jørgensen, K Chiboucas, R Davies, M Bergmann

Abstract:

We present the fundamental plane (FP) in the z = 0.28 cluster of galaxies RX J0142.0+2131. There is no evidence for a difference in the slope of the FP when compared with the Coma Cluster, although the internal scatter is larger. On average, stellar populations in RX J0142.0+2131 have rest-frame V-band mass-to-light ratios (MILv) 0.29 ± 0.03 dex lower than in Coma. This is significantly lower than expected for a passively evolving cluster formed at zf = 2. Lenticular galaxies have lower average M/L v and a distribution of M/Lv with larger scatter than ellipticals. Lower mass-to-light ratios are not due to recent star formation: our previous spectroscopic observations of RX J0142.0+2131 E/S0 galaxies showed no evidence for significant star formation within the past ∼4 Gyr. However, cluster members have enhanced α-element abundance ratios, which may act to decrease M/Lv. The increased scatter in the RX J0142.0+2131 FP reflects a large scatter in M/Lv implying that galaxies have undergone bursts of star formation over a range of epochs. The seven easternmost cluster galaxies, including the second brightest member, have M/Lv consistent with passive evolution and zf = 2. We speculate that RX J0142.0+2131 is a cluster-cluster merger where the galaxies to the east are yet to fall into the main cluster body or have not experienced star formation as a result of the merger. © 2006. The American Astronomical Society. All rights reserved.
More details from the publisher

Star formation in nearby early-type galaxies: Mapping in UV, optical and CO

Proceedings of the International Astronomical Union 2:S235 (2006) 304

Authors:

M Bureau, R Bacon, M Cappellari, F Combes, RL Davies, PT De Zeeuw, E Emsellem, J Falcn-Barroso, H Jeong, D Krajnovi, H Kuntschner, RM McDermid, RF Peletier, M Sarzi, KL Shapiro, G Van De Ven, SK Yi, LM Young

Abstract:

The SAURON integral-field survey reveals that small (∼0.1,Re) kinematically decoupled cores (KDCs) in early-type galaxies are increasingly young toward the center and are typically found in fast-rotating galaxies, while large KDCs (∼0.5 Re) have homogeneously old stars and are present in non-rotating galaxies (McDermid et al. 2006). GALEX UV imaging further allows the direct identification of regions of recent star formation (0.5 Gyr). In NGC 2974 for example, young stars are identified in the center and an outer ring Jeong et al. 2006). Nuclear and inner ionised-gas rings (Sarzi et al. 2006) then suggest that current star formation is bar-driven. The CO detection rate of SAURON early-type galaxies is 40% (Combes et al. in prep.). Synthesis imaging reveals that it is generally contained in a well-ordered central disk, both in galaxies with a (young) central stellar disk (e.g. NGC 4459, NGC 4526) or a (young) KDC (e.g. NGC 3032, NGC 4150) (Young et al. in prep.). CO also traces well the young stellar populations and ionised gas distribution and kinematics, but in KDCs not always the stellar kinematics Emsellem et al. 2004; Sarzi et al. 2006; Kuntschner et al. 2006). © 2007 International Astronomical Union.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • Current page 44
  • Page 45
  • Page 46
  • Page 47
  • Page 48
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet