Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Roger Davies

Emeritus Wetton Professor

Research theme

  • Astronomy and astrophysics
  • Instrumentation

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • Rubin-LSST
  • Extremely Large Telescope
Roger.Davies@physics.ox.ac.uk
  • About
  • Publications

Stellar kinematics and populations of early-type galaxies with the SAURON and OASIS integral-field spectrographs

NEW ASTRON REV 49:10-12 (2006) 521-535

Authors:

RM McDermid, R Bacon, H Kuntschner, E Emsellem, KL Shapiro, M Bureau, M Cappellari, RL Davies, J Falcon-Barroso, D Krajnovic, RF Peletier, M Sarzi, T de Zeeuw

Abstract:

We summarise the results and achievements of integral-field spectroscopy of early-type galaxies.. observed as part of a survey using both the SAURON and OASIS spectrographs. From the perspective of integral-field spectroscopy, these otherwise smooth and featureless objects show a wealth of structure, both in their stellar kinematics and populations. We focus on the stellar content, and examine properties on both kiloparsec scales with SAURON, and scales of 100's of parsecs with OASIS. These complementary studies reveal two types of kinematically distinct components (KDCs), differing primarily in their intrinsic sizes. In previous studies, KDCs and their host galaxies have generally been found to be unremarkable in other aspects. We show that large KDCs, typical of the well-studied cases, indeed show little or no age differences with their host galaxy. The KDCs detected with the higher spatial-resolution of OASIS are intrinsically smaller and include, in contrast, a significant fraction of young stars. We speculate on the relationship between KDCs and their host galaxies, and the implications for young populations in early-type galaxies. (c) 2005 Elsevier B.V. All rights reserved.
More details from the publisher
More details

Design of the KMOS multi-object integral field spectrograph - art. no. 62691C

P SOC PHOTO-OPT INS 6269 (2006) C2691-C2691

Authors:

R Sharples, R Bender, R Bennett, K Burch, P Carter, M Casali, P Clark, R Content, R Davies, R Davies, M Dubbeldam, G Finger, R Genzel, R Haefner, A Hess, M Kissler-Patig, K Laidlaw, M Lehnert, I Lewis, A Moorwood, B Muschielok, NF Schreiber, J Pirard, SR Howat, P Rees, J Richter, D Robertson, I Robson, R Saglia, M Tecza, N Thatte, S Todd, M Wegner

Abstract:

KMOS is a near-infrared multi-object integral field spectrometer which has been selected as one of a suite of second-generation instruments to be constructed for the ESO VLT in Chile. The instrument will be built by a consortium of UK and German institutes working in partnership with ESO and is currently at the end of its preliminary design phase. We present the design status of KMOS and discuss the most novel technical aspects and the compliance with the technical specification.
More details from the publisher
More details

Probing the low-luminosity X-ray luminosity function in normal elliptical galaxies

ASTROPHYSICAL JOURNAL 652:2 (2006) 1090-1096

Authors:

D-W Kim, G Fabbiano, V Kalogera, AR King, S Pellegrini, G Trinchieri, SE Zepf, A Zezas, L Angelini, RL Davies, JS Gallagher
More details from the publisher

The Oxford SWIFT integral field spectrograph - art. no. 62693L

P SOC PHOTO-OPT INS 6269 (2006) L2693-L2693

Authors:

N Thatte, M Tecza, F Clarke, T Goodsall, J Lynn, D Freeman, RL Davies

Abstract:

We present the design of the Oxford SWIFT integral field spectrograph, a dedicated I and z band instrument (0.65 mu m - 1.0 mu m at R similar to 4000), designed to be used in conjunction with the Palomar laser guide star adaptive optics system (PALAO, and its planned upgrade PALM-3000). It builds on two recent developments (i) the improved ability of second generation adaptive optics systems to correct for atmospheric turbulence at wavelengths <= 1 mu m, and (ii) the availability of CCD array detectors with high quantum efficiency at very red wavelengths (close to the silicon band edge). Combining these with a state-of-the-art integral field unit design using an all-glass image slicer, SWIFT's design provides very high throughput and low scattered light.SWIFT simultaneously provides spectra of similar to 4000 spatial elements, arranged in a rectangular field-of-view of 44 x 89 pixels. It has three on-the-fly selectable pixel scales of 0."24, 0."16 and 0."08. First light is expected in spring 2008.
More details from the publisher
More details

The fundamental plane in RX J0142.0+2131:: A galaxy cluster merger at z=0.28

ASTROPHYSICAL JOURNAL 649:1 (2006) L1-L4

Authors:

Jordi Barr, Inger Jorgensen, Kristin Chiboucas, Roger Davies, Marcel Bergmann
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • Current page 48
  • Page 49
  • Page 50
  • Page 51
  • Page 52
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet