Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Roger Davies

Emeritus Wetton Professor

Research theme

  • Astronomy and astrophysics
  • Instrumentation

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • Rubin-LSST
  • Extremely Large Telescope
Roger.Davies@physics.ox.ac.uk
  • About
  • Publications

Distinguishing local and global influences on galaxy morphology: A Hubble Space Telescope comparison of high and low X-ray luminosity clusters

Astrophysical Journal 566:1 I (2002) 123-136

Authors:

ML Balogh, I Smail, RG Bower, BL Ziegler, GP Smith, RL Davies, A Gaztelu, JP Kneib, H Ebeling

Abstract:

We present a morphological analysis of 17 X-ray-selected clusters at z ∼ 0.25, imaged uniformly with the Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2). Eight of these clusters comprise a subsample selected for their low X-ray luminosities (≲1044 ergs s -1), called the low-Lx sample. The remaining nine clusters comprise a high-Lx subsample with Lx > 10 45 ergs s-1. The two subsamples differ in their mean X-ray luminosity by a factor of 30 and span a range of more than 300. The clusters cover a relatively small range in redshift (z = 0.17-0.3, σ z/Z ∼ 0.15), and the data are homogeneous in terms of depth, resolution (0″.17 = 1 h50-1 kpc at z = 0.25), and rest wavelength observed, minimizing differential corrections from cluster to cluster. We fit the two-dimensional surface brightness profiles of galaxies down to very faint absolute magnitudes, M702 ≤, -18.2 + 5 log h50 (roughly 0.01L*R) with parametric models, and quantify their morphologies using the fractional bulge luminosity (B/T). Within a single WFPC2 image, covering a field of ∼ 3′ (1h50-1 Mpc at z = 0.25) in the cluster center, we find that the low-Lx clusters are dominated by galaxies with low B/T (∼ 0), while the high-Lx clusters are dominated by galaxies with intermediate B/T (∼ 0.4). We test whether this difference could arise from a universal morphology-density relation due to differences in the typical galaxy densities in the two samples. We find that small differences in the B/T distributions of the two samples persist with marginal statistical significance (98% confidence based on a binned Χ2 test) even when we restrict the comparison to galaxies in environments with similar projected local galaxy densities. A related difference (also of low statistical significance) is seen between the bulge-luminosity functions of the two cluster samples, while no difference is seen between the disk luminosity functions. From the correlations between these quantities, we argue that the global environment affects the population of bulges, over and above trends seen with local density. On the basis of this result, we conclude that the destruction of disks through ram pressure stripping or harassment is not solely responsible for the morphology-density relation and that bulge formation is less efficient in low-mass clusters, perhaps reflecting a less rich merger history.
More details from the publisher

A SAURON study of M32: measuring the intrinsic flattening and the central black hole mass

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 335:3 (2002) 517-525

Authors:

EK Verolme, M Cappellari, Y Copin, RP van der Marel, R Bacon, M Bureau, RL Davies, BM Miller, PT de Zeeuw
More details from the publisher

Distinguishing local and global influences on galaxy morphology:: A Hubble Space Telescope comparison of high and low X-ray luminosity clusters

ASTROPHYSICAL JOURNAL 566:1 (2002) 123-136

Authors:

ML Balogh, I Smail, RG Bower, BL Ziegler, GP Smith, RL Davies, A Gaztelu, JP Kneib, H Ebeling
More details from the publisher
Details from ArXiV

Galaxy properties in low X-ray luminosity clusters at z=0.25

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 337:1 (2002) 256-274

Authors:

M Balogh, RG Bower, I Smail, BL Ziegler, RL Davies, A Gaztelu, A Fritz
More details from the publisher
Details from ArXiV

Near-infrared and optical morphology of spiral galaxies

ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES 143:1 (2002) 73-111

Authors:

PB Eskridge, JA Frogel, RW Pogge, AC Quillen, AA Berlind, RL Davies, DL DePoy, KM Gilbert, ML Houdashelt, LE Kuchinski, SV Ramírez, K Sellgren, A Stutz, DM Terndrup, GP Tiede
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 52
  • Page 53
  • Page 54
  • Page 55
  • Current page 56
  • Page 57
  • Page 58
  • Page 59
  • Page 60
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet