Hubble Space Telescope-NICMOS Observations of M31’s Metal-Rich Globular Clusters and Their Surrounding Fields. II. Results**Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., for NASA under contract NAS 5-26555.
The Astronomical Journal American Astronomical Society 121:5 (2001) 2597-2609
On the origin of the color-magnitude relation in the Virgo Cluster
Astrophysical Journal 551:2 PART 2 (2001)
Abstract:
We explore the origin of the color-magnitude relation (CMR) of early-type galaxies in the Virgo Cluster using spectra of very high signal-to-noise ratio for six elliptical galaxies selected along the CMR. The data are analyzed using a new evolutionary stellar population synthesis model to generate galaxy spectra at the resolution given by their velocity dispersions. In particular, we use a new age indicator that is virtually free of the effects of metallicity. We find that the luminosity-weighted mean ages of Virgo ellipticals are greater than ∼8 Gyr and show no clear trend with galaxy luminosity. We also find a positive correlation of metallicity with luminosity, color, and velocity dispersion. We conclude that the CMR is driven primarily by a luminosity-metallicity correlation. However, not all elements increase equally with the total metallicity, and we speculate that the CMR may be driven by both a total metallicity increase and a systematic departure from solar abundance ratios of some elements along the CMR. A full understanding of the role played by the total metallicity, abundance ratios, and age in generating the CMR requires the analysis of spectra of very high quality, such as those reported here, for a larger number of galaxies in Virgo and other clusters.Galaxy mapping with the sauron integral-field spectrograph: The star formation history of NGC 4365
Astrophysical Journal 548:1 PART 2 (2001)
Abstract:
We report the first wide-field mapping of the kinematics and stellar populations in the E3 galaxy NGC 4365. The velocity maps extend previous long-slit work. They show two independent kinematic subsystems: the central 300 pc × 700 pc rotates about the projected minor axis, and the main body of the galaxy, 3 kpc × 4 kpc, rotates almost at right angles to this. The line strength maps show that the metallicity of the stellar population decreases from a central value greater than solar to one-half solar at a radius of 2 kpc. The decoupled core and main body of the galaxy have the same luminosity-weighted age, ≈14 Gyr, and the same elevated magnesium-to-iron ratio. The two kinematically distinct components have thus shared a common star formation history. We infer that the galaxy underwent a sequence of mergers associated with dissipative star formation that ended ≳ 12 Gyr ago. The misalignment between the photometric and kinematic axes of the main body is unambiguous evidence of triaxiality. The similarity of the stellar populations in the two components suggests that the observed kinematic structure has not changed substantially in 12 Gyr.The Star Formation of NGC 4365
Astrophysical Journal Letters 548 (2001) L33-L36
SAURON Observations of Disks in Early-Type Galaxies
(2001)