Catalogues of voids as antihalos in the local Universe
(2021)
Abstract:
A recently-proposed algorithm identifies voids in simulations as the regions associated with halos when the initial overdensity field is negated. We apply this method to the real Universe by running a suite of constrained simulations of the 2M++ volume with initial conditions inferred by the BORG algorithm, along with the corresponding inverted set. Our 101 inverted and uninverted simulations, spanning the BORG posterior, each identify ~150,000 "voids as antihalos" with mass exceeding $4.36\times10^{11} \: \mathrm{M_\odot}$ (100 particles) at $z=0$ in a full-sky sphere of radius 155 Mpc/h around the Milky Way. We calculate the size function, volume filling fraction, ellipticity, central and average density, specific angular momentum, clustering and stacked density profile of the voids, and cross-correlate them with those produced by VIDE on the same simulations. We make our antihalo and VIDE catalogues publicly available.Constraints on equivalence principle violation from gamma ray bursts
Physical Review D American Physical Society 104 (2021) 084025
Abstract:
Theories of gravity that obey the Weak Equivalence Principle have the same Parametrised Post-Newtonian parameter $\gamma$ for all particles at all energies. The large Shapiro time delays of extragalactic sources allow us to put tight constraints on differences in $\gamma$ between photons of different frequencies from spectral lag data, since a non-zero $\Delta \gamma$ would result in a frequency-dependent arrival time. The majority of previous constraints have assumed that the Shapiro time delay is dominated by a few local massive objects, although this is a poor approximation for distant sources. In this work we consider the cosmological context of these sources by developing a source-by-source, Monte Carlo-based forward model for the Shapiro time delays by combining constrained realisations of the local density field using the Bayesian origin reconstruction from galaxies algorithm with unconstrained large-scale modes. Propagating uncertainties in the density field reconstruction and marginalising over an empirical model describing other contributions to the time delay, we use spectral lag data of Gamma Ray Bursts from the BATSE satellite to constrain $\Delta \gamma < 2.1 \times 10^{-15}$ at $1 \sigma$ confidence between photon energies of $25 {\rm \, keV}$ and $325 {\rm \, keV}$.Erratum: “Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies” (2020, ApJ, 904, 51)
The Astrophysical Journal American Astronomical Society 910:1 (2021) 81
Novel Probes Project: tests of gravity on astrophysical scales
Reviews of Modern Physics American Physical Society 93:1 (2021) 15003
Abstract:
The Novel Probes Project, an initiative to advance the field of astrophysical tests of the dark sector by creating a forum that connects observers and theorists, is introduced. This review focuses on tests of gravity and is intended to be of use primarily to observers, as well as theorists with an interest in the development of experimental tests. It is twinned with a separate upcoming review on dark matter self-interactions. The review focuses on astrophysical tests of gravity in the weak-field regime, ranging from stars to quasilinear cosmological scales. This regime is complementary to both strong-field tests of gravity and background and linear probes in cosmology. In particular, the nonlinear screening mechanisms that are an integral part of viable modified-gravity models lead to characteristic signatures, specifically on astrophysical scales. The potential of these probes is not limited by cosmic variance but comes with the challenge of building robust theoretical models of the nonlinear dynamics of stars, galaxies, and large-scale structure. The groundwork is laid for a thorough exploration of the weak-field, nonlinear regime, with an eye to using the current and next generation of observations for tests of gravity. The scene is set by showing how gravitational theories beyond general relativity are expected to behave, focusing primarily on screening mechanisms. Analytic and numerical techniques for exploring the relevant astrophysical regime are described, as are the pertinent observational signals. With these in hand a range of astrophysical tests of gravity are presented, and prospects for future measurements and theoretical developments are discussed.Five percent measurement of the gravitational constant in the Large Magellanic Cloud
Physical Review D American Physical Society (APS) 103:2 (2021) 024028