Galaxy morphology rules out astrophysically relevant Hu-Sawicki f (R) gravity
Physical Review D American Physical Society 102:10 (2020) 104060
Abstract:
f ( R ) is a paradigmatic modified gravity theory that typifies extensions to General Relativity with new light degrees of freedom and hence screened fifth forces between masses. These forces produce observable signatures in galaxy morphology, caused by a violation of the weak equivalence principle due to a differential impact of screening among galaxies’ mass components. We compile statistical datasets of two morphological indicators—offsets between stars and gas in galaxies and warping of stellar disks—and use them to constrain the strength and range of a thin-shell-screened fifth force. This is achieved by applying a comprehensive set of upgrades to past work [H. Desmond et al., Phys. Rev. D 98, 064015 (2018); H. Desmond et al., Phys. Rev. D 98, 083010 (2018) ]: we construct a robust galaxy-by-galaxy Bayesian forward model for the morphological signals, including full propagation of uncertainties in the input quantities and marginalization over an empirical model describing astrophysical noise. Employing more stringent data quality cuts than previously we find no evidence for a screened fifth force of any strength Δ G / G N in the Compton wavelength range 0.3–8 Mpc, setting a 1 σ bound of Δ G / G N < 0.8 at λ C = 0.3 Mpc that strengthens to Δ G / G N < 3 × 10 − 5 at λ C = 8 Mpc . These are the tightest bounds to date beyond the Solar System by over an order of magnitude. For the Hu-Sawicki model of f ( R ) with n = 1 we require a background scalar field value f R 0 < 1.4 × 10 − 8 , forcing practically all astrophysical objects to be screened. We conclude that this model can have no relevance to astrophysics or cosmology.Local resolution of the Hubble tension: The impact of screened fifth forces on the cosmic distance ladder
Physical Review D American Physical Society (APS) 100:4 (2019) 043537
The Velocity Field Olympics: Assessing velocity field reconstructions with direct distance tracers
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1960
Abstract:
Abstract The peculiar velocity field of the local Universe provides direct insights into its matter distribution and the underlying theory of gravity, and is essential in cosmological analyses for modelling deviations from the Hubble flow. Numerous methods have been developed to reconstruct the density and velocity fields at z ≲ 0.05, typically constrained by redshift-space galaxy positions or by direct distance tracers such as the Tully–Fisher relation, the fundamental plane, or Type Ia supernovae. We introduce a validation framework to evaluate the accuracy of these reconstructions against catalogues of direct distance tracers. Our framework assesses the goodness-of-fit of each reconstruction using Bayesian evidence, residual redshift discrepancies, velocity scaling, and the need for external bulk flows. Applying this framework to a suite of reconstructions—including those derived from the Bayesian Origin Reconstruction from Galaxies (BORG) algorithm and from linear theory—we find that the non-linear BORG reconstruction consistently outperforms others. We highlight the utility of such a comparative approach for supernova or gravitational wave cosmological studies, where selecting an optimal peculiar velocity model is essential. Additionally, we present calibrated bulk flow curves predicted by the reconstructions and perform a density–velocity cross-correlation using a linear theory reconstruction to constrain the growth factor, yielding S8 = 0.793 ± 0.035. The result is in good agreement with both weak lensing and Planck, but is in strong disagreement with some peculiar velocity studies.Constraints on dark matter annihilation and decay from the large-scale structure of the nearby Universe
Physical Review D American Physical Society 106:10 (2022) 103526
Abstract:
Decaying or annihilating dark matter particles could be detected through gamma-ray emission from the species they decay or annihilate into. This is usually done by modeling the flux from specific dark matter-rich objects such as the Milky Way halo, Local Group dwarfs, and nearby groups. However, these objects are expected to have significant emission from baryonic processes as well, and the analyses discard gamma-ray data over most of the sky. Here we construct full-sky templates for gamma-ray flux from the large-scale structure within ∼200 Mpc by means of a suite of constrained N-body simulations (csiborg) produced using the Bayesian Origin Reconstruction from Galaxies algorithm. Marginalizing over uncertainties in this reconstruction, small-scale structure, and parameters describing astrophysical contributions to the observed gamma-ray sky, we compare to observations from the Fermi Large Area Telescope to constrain dark matter annihilation cross sections and decay rates through a Markov chain Monte Carlo analysis. We rule out the thermal relic cross section for s-wave annihilation for all mχ7 GeV/c2 at 95% confidence if the annihilation produces gluons or quarks less massive than the bottom quark. We infer a contribution to the gamma-ray sky with the same spatial distribution as dark matter decay at 3.3σ. Although this could be due to dark matter decay via these channels with a decay rate Γ≈6×10-28 s-1, we find that a power-law spectrum of index p=-2.75-0.46+0.71, likely of baryonic origin, is preferred by the data.Exhaustive symbolic regression
IEEE Transactions on Evolutionary Computation IEEE (2023)