Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Harry Desmond

Visitor

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
harry.desmond@physics.ox.ac.uk
Telephone: 01865(2)83019
ICG webpage
  • About
  • Publications

The scatter in the galaxy-halo connection: a machine learning analysis

Monthly Notices of the Royal Astronomical Society Oxford University Press 514:3 (2022) 4026-4045

Authors:

Richard Stiskalek, Deaglan J Bartlett, Harry Desmond, Dhayaa Anbajagane

Abstract:

We apply machine learning (ML), a powerful method for uncovering complex correlations in high-dimensional data, to the galaxy-halo connection of cosmological hydrodynamical simulations. The mapping between galaxy and halo variables is stochastic in the absence of perfect information, but conventional ML models are deterministic and hence cannot capture its intrinsic scatter. To overcome this limitation, we design an ensemble of neural networks with a Gaussian loss function that predict probability distributions, allowing us to model statistical uncertainties in the galaxy-halo connection as well as its best-fitting trends. We extract a number of galaxy and halo variables from the Horizon-AGN and IllustrisTNG100-1 simulations and quantify the extent to which knowledge of some subset of one enables prediction of the other. This allows us to identify the key features of the galaxy-halo connection and investigate the origin of its scatter in various projections. We find that while halo properties beyond mass account for up to 50 per cent of the scatter in the halo-To-stellar mass relation, the prediction of stellar half-mass radius or total gas mass is not substantially improved by adding further halo properties. We also use these results to investigate semi-Analytic models for galaxy size in the two simulations, finding that assumptions relating galaxy size to halo size or spin are not successful.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Constraints on quantum gravity and the photon mass from gamma ray bursts

Physical Review D American Physical Society 104:10 (2021) 103516

Authors:

Dj Bartlett, H Desmond, Pg Ferreira, J Jasche

Abstract:

Lorentz invariance violation in quantum gravity (QG) models or a nonzero photon mass, mγ, would lead to an energy-dependent propagation speed for photons, such that photons of different energies from a distant source would arrive at different times, even if they were emitted simultaneously. By developing source-by-source, Monte Carlo-based forward models for such time delays from gamma ray bursts, and marginalizing over empirical noise models describing other contributions to the time delay, we derive constraints on mγ and the QG length scale, ℓQG, using spectral lag data from the BATSE satellite. We find mγ<4.0×10-5 h eV/c2 and ℓQG<5.3×10-18 h GeV-1 at 95% confidence, and demonstrate that these constraints are robust to the choice of noise model. The QG constraint is among the tightest from studies which consider multiple gamma ray bursts and the constraint on mγ, although weaker than from using radio data, provides an independent constraint which is less sensitive to the effects of dispersion by electrons.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Testing the Strong Equivalence Principle. II. Relating the External Field Effect in Galaxy Rotation Curves to the Large-scale Structure of the Universe

The Astrophysical Journal American Astronomical Society 921:2 (2021) 104

Authors:

Kyu-Hyun Chae, Harry Desmond, Federico Lelli, Stacy S McGaugh, James M Schombert
More details from the publisher

Catalogues of voids as antihalos in the local Universe

(2021)

Authors:

Harry Desmond, Maxwell L Hutt, Julien Devriendt, Adrianne Slyz

Abstract:

A recently-proposed algorithm identifies voids in simulations as the regions associated with halos when the initial overdensity field is negated. We apply this method to the real Universe by running a suite of constrained simulations of the 2M++ volume with initial conditions inferred by the BORG algorithm, along with the corresponding inverted set. Our 101 inverted and uninverted simulations, spanning the BORG posterior, each identify ~150,000 "voids as antihalos" with mass exceeding $4.36\times10^{11} \: \mathrm{M_\odot}$ (100 particles) at $z=0$ in a full-sky sphere of radius 155 Mpc/h around the Milky Way. We calculate the size function, volume filling fraction, ellipticity, central and average density, specific angular momentum, clustering and stacked density profile of the voids, and cross-correlate them with those produced by VIDE on the same simulations. We make our antihalo and VIDE catalogues publicly available.
Details from ArXiV
More details from the publisher

Constraints on equivalence principle violation from gamma ray bursts

Physical Review D American Physical Society 104 (2021) 084025

Authors:

Deaglan J Bartlett, Dexter Bergsdal, Harry Desmond, Pedro G Ferreira, Jens Jasche

Abstract:

Theories of gravity that obey the Weak Equivalence Principle have the same Parametrised Post-Newtonian parameter $\gamma$ for all particles at all energies. The large Shapiro time delays of extragalactic sources allow us to put tight constraints on differences in $\gamma$ between photons of different frequencies from spectral lag data, since a non-zero $\Delta \gamma$ would result in a frequency-dependent arrival time. The majority of previous constraints have assumed that the Shapiro time delay is dominated by a few local massive objects, although this is a poor approximation for distant sources. In this work we consider the cosmological context of these sources by developing a source-by-source, Monte Carlo-based forward model for the Shapiro time delays by combining constrained realisations of the local density field using the Bayesian origin reconstruction from galaxies algorithm with unconstrained large-scale modes. Propagating uncertainties in the density field reconstruction and marginalising over an empirical model describing other contributions to the time delay, we use spectral lag data of Gamma Ray Bursts from the BATSE satellite to constrain $\Delta \gamma < 2.1 \times 10^{-15}$ at $1 \sigma$ confidence between photon energies of $25 {\rm \, keV}$ and $325 {\rm \, keV}$.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet