Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Harry Desmond

Visitor

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
harry.desmond@physics.ox.ac.uk
Telephone: 01865(2)83019
ICG webpage
  • About
  • Publications

Stellar feedback and the energy budget of late-type Galaxies: Missing baryons and core creation

Monthly Notices of the Royal Astronomical Society Oxford University Press 480:4 (2018) 4287-4301

Authors:

Harley Katz, Harry Desmond, F Lelli, S McGaugh, A Di Cintio, C Brook, J Schombert

Abstract:

In a ΛCDM cosmology, galaxy formation is a globally inefficient process: it is often the case that far fewer baryons are observed in galaxy discs than expected from the cosmic baryon fraction. The location of these ‘missing baryons’ is unclear. By fitting halo profiles to the rotation curves of galaxies in the SPARC data set, we measure the ‘missing baryon’ mass for individual late-type systems. Assuming that haloes initially accrete the cosmological baryon fraction, we show that the maximum energy available from supernovae is typically not enough to completely eject these ‘missing baryons’ from a halo, but it is often sufficient to heat them to the virial temperature. The energy available from supernovae has the same scaling with galaxy mass as the energy needed to heat or eject the ‘missing baryons’, indicating that the coupling efficiency of the feedback to the ISM may be constant with galaxy virial mass. We further find that the energy available from supernova feedback is always enough to convert a primordial cusp into a core and has magnitude consistent with what is required to heat the ‘missing baryons’ to the virial temperature. Taking a census of the baryon content of galaxies with 109 < Mvir/M⊙ < 1012 reveals that ∼86 per cent of baryons are likely to be in a hot phase surrounding the galaxies and possibly observable in the X-ray, ∼7 per cent are in the form of cold gas, and ∼7 per cent are in stars.
More details from the publisher
Details from ORA
More details

The scatter, residual correlations and curvature of the sparc baryonic Tully–Fisher relation

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 472:1 (2017) L35-L39

Abstract:

In recentwork, Lelli et al. argue that the tightness of the baryonic Tully–Fisher relation (BTFR) of the SPARC galaxy sample, and the weakness of the correlation of its residuals with effective radius, pose challenges to Λ cold dark matter cosmology. In this Letter, we calculate the statistical significance of these results in the framework of halo abundance matching, which imposes a canonical galaxy–halo connection. Taking full account of sample variance among SPARC-like realizations of the parent halo population, we find the scatter in the predicted BTFR to be 3.6σ too high, but the correlation of its residuals with galaxy size to be naturally weak. Further, we find abundance matching to generate BTFR curvature in 3.0σ disagreement with the data, and a fraction of galaxies with non-flat rotation curves somewhat larger than observed.
More details from the publisher
Details from ORA
More details
Details from ArXiV

On the galaxy–halo connection in the EAGLE simulation

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 471:1 (2017) L11-L15

Authors:

Harry Desmond, Y-Y Mao, RH Wechsler, RA Crain, J Schaye

Abstract:

Empirical models of galaxy formation require assumptions about the correlations between galaxy and halo properties. These may be calibrated against observations or inferred from physical models such as hydrodynamical simulations. In this Letter, we use the EAGLE simulation to investigate the correlation of galaxy size with halo properties. We motivate this analysis by noting that the common assumption of angular momentum partition between baryons and dark matter in rotationally supported galaxies overpredicts both the spread in the stellar mass–size relation and the anticorrelation of size and velocity residuals, indicating a problem with the galaxy–halo connection it implies. We find the EAGLE galaxy population to perform significantly better on both statistics, and trace this success to the weakness of the correlations of galaxy size with halo mass, concentration and spin at fixed stellar mass. Using these correlations in empirical models will enable fine-grained aspects of galaxy scalings to be matched.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The Faber–Jackson relation and Fundamental Plane from halo abundance matching

Monthly Notices of the Royal Astronomical Society Oxford University Press 465:1 (2016) 820-833

Authors:

Harry Desmond, RH Wechsler

Abstract:

The Fundamental Plane (FP) describes the relation between the stellar mass, size, and velocity dispersion of elliptical galaxies; the Faber–Jackson relation (FJR) is its projection on to {mass, velocity} space. In this work, we re-deploy and expand the framework of Desmond & Wechsler to ask whether abundance matching-based Λ-cold dark matter models which have shown success in matching the spatial distribution of galaxies are also capable of explaining key properties of the FJR and FP, including their scatter. Within our framework, agreement with the normalization of the FJR requires haloes to expand in response to disc formation.We find that the tilt of the FP may be explained by a combination of the observed non-homology in galaxy structure and the variation in mass-to-light ratio produced by abundance matching with a universal initial mass function, provided that the anisotropy of stellar motions is taken into account. However, the predicted scatter around the FP is considerably increased by situating galaxies in cosmologically motivated haloes due to the variations in halo properties at fixed stellar mass and appears to exceed that of the data. This implies that additional correlations between galaxy and halo variables may be required to fully reconcile these models with elliptical galaxy scaling relations.
More details from the publisher
Details from ORA
More details
Details from ArXiV

A statistical investigation of the mass discrepancy–acceleration relation

Monthly Notices of the Royal Astronomical Society Oxford University Press 464:4 (2016) 4160-4175

Abstract:

We use the mass discrepancy–acceleration relation (the correlation between the ratio of total-to-visible mass and acceleration in galaxies; MDAR) to test the galaxy–halo connection. We analyse the MDAR using a set of 16 statistics that quantify its four most important features: shape, scatter, the presence of a ‘characteristic acceleration scale’, and the correlation of its residuals with other galaxy properties. We construct an empirical framework for the galaxy– halo connection inLCDMto generate predictions for these statistics, starting with conventional correlations (halo abundance matching;AM)and introducing more where required. Comparing to the SPARC data, we find that: (1) the approximate shape of the MDAR is readily reproduced by AM, and there is no evidence that the acceleration at which dark matter becomes negligible has less spread in the data than in AM mocks; (2) even under conservative assumptions, AM significantly overpredicts the scatter in the relation and its normalization at low acceleration, and furthermore positions dark matter too close to galaxies’ centres on average; (3) the MDAR affords 2σ evidence for an anticorrelation of galaxy size and Hubble type with halo mass or concentration at fixed stellar mass. Our analysis lays the groundwork for a bottom-up determination of the galaxy–halo connection from relations such as the MDAR, provides concrete statistical tests for specific galaxy formationmodels, and brings into sharper focus the relative evidence accorded by galaxy kinematics to LCDM and modified gravity alternatives.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12
  • Page 13
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet