Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

The challenges of identifying Population III stars in the early universe

(2022)

Authors:

Harley Katz, Taysun Kimm, Richard S Ellis, Julien Devriendt, Adrianne Slyz
More details from the publisher
Details from ArXiV

Inferring dark matter halo properties for HI-selected galaxies

(2022)

Authors:

Tariq Yasin, Harry Desmond, Julien Devriendt, Adrianne Slyz
More details from the publisher
Details from ArXiV

MgII in the JWST era: a probe of Lyman continuum escape?

(2022)

Authors:

Harley Katz, Thibault Garel, Joakim Rosdahl, Valentin Mauerhofer, Taysun Kimm, Jérémy Blaizot, Léo Michel-Dansac, Julien Devriendt, Adrianne Slyz, Martin Haehnelt
More details from the publisher
Details from ORA
More details
Details from ArXiV

MgII in the JWST era: a probe of Lyman continuum escape?

(2022)

Authors:

Harley Katz, Thibault Garel, Joakim Rosdahl, Valentin Mauerhofer, Taysun Kimm, Jérémy Blaizot, Léo Michel-Dansac, Julien Devriendt, Adrianne Slyz, Martin Haehnelt
More details from the publisher
Details from ORA

LyMAS reloaded: improving the predictions of the large-scale Lyman-α forest statistics from dark matter density and velocity fields

Monthly Notices of the Royal Astronomical Society Oxford University Press 514:3 (2022) 3222-3245

Authors:

S Peirani, S Prunet, S Colombi, C Pichon, Dh Weinberg, C Laigle, G Lavaux, Y Dubois, J Devriendt

Abstract:

We present LyMAS2, an improved version of the ‘Lyman-α Mass Association Scheme’ aiming at predicting the large-scale 3D clustering statistics of the Lyman-α forest (Ly α) from moderate-resolution simulations of the dark matter (DM) distribution, with prior calibrations from high-resolution hydrodynamical simulations of smaller volumes. In this study, calibrations are derived from the HORIZON-AGN suite simulations, (100 Mpc h)−3 comoving volume, using Wiener filtering, combining information from DM density and velocity fields (i.e. velocity dispersion, vorticity, line-of-sight 1D-divergence and 3D-divergence). All new predictions have been done at z = 2.5 in redshift space, while considering the spectral resolution of the SDSS-III BOSS Survey and different DM smoothing (0.3, 0.5, and 1.0 Mpc h−1 comoving). We have tried different combinations of DM fields and found that LyMAS2, applied to the HORIZON-NOAGN DM fields, significantly improves the predictions of the Ly α 3D clustering statistics, especially when the DM overdensity is associated with the velocity dispersion or the vorticity fields. Compared to the hydrodynamical simulation trends, the two-point correlation functions of pseudo-spectra generated with LyMAS2 can be recovered with relative differences of ∼5 per cent even for high angles, the flux 1D power spectrum (along the light of sight) with ∼2 per cent and the flux 1D probability distribution function exactly. Finally, we have produced several large mock BOSS spectra (1.0 and 1.5 Gpc h−1) expected to lead to much more reliable and accurate theoretical predictions.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet