Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

Simulating Jellyfish Galaxies: A Case Study for a Gas-Rich Dwarf Galaxy

(2022)

Authors:

Jaehyun Lee, Taysun Kimm, Jérémy Blaizot, Harley Katz, Wonki Lee, Yun-Kyeong Sheen, Julien Devriendt, Adrianne Slyz
More details from the publisher
Details from ArXiV

Towards convergence of turbulent dynamo amplification in cosmological simulations of galaxies

(2021)

Authors:

Sergio Martin-Alvarez, Julien Devriendt, Adrianne Slyz, Debora Sijacki, Mark LA Richardson, Harley Katz
More details from the publisher
Details from ArXiV

Momentum deposition of supernovae with cosmic rays

(2021)

Authors:

Francisco Rodríguez Montero, Sergio Martin-Alvarez, Debora Sijacki, Adrianne Slyz, Julien Devriendt, Yohan Dubois
Details from ORA
More details from the publisher
Details from ArXiV

Catalogues of voids as antihalos in the local Universe

(2021)

Authors:

Harry Desmond, Maxwell L Hutt, Julien Devriendt, Adrianne Slyz

Abstract:

A recently-proposed algorithm identifies voids in simulations as the regions associated with halos when the initial overdensity field is negated. We apply this method to the real Universe by running a suite of constrained simulations of the 2M++ volume with initial conditions inferred by the BORG algorithm, along with the corresponding inverted set. Our 101 inverted and uninverted simulations, spanning the BORG posterior, each identify ~150,000 "voids as antihalos" with mass exceeding $4.36\times10^{11} \: \mathrm{M_\odot}$ (100 particles) at $z=0$ in a full-sky sphere of radius 155 Mpc/h around the Milky Way. We calculate the size function, volume filling fraction, ellipticity, central and average density, specific angular momentum, clustering and stacked density profile of the voids, and cross-correlate them with those produced by VIDE on the same simulations. We make our antihalo and VIDE catalogues publicly available.
Details from ArXiV
More details from the publisher

Catalogues of voids as antihalos in the local Universe

(2021)

Authors:

Harry Desmond, Maxwell L Hutt, Julien Devriendt, Adrianne Slyz
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Current page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet