Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

High angular momentum halo gas: a feedback and code-independent prediction of LCDM

Astrophysical Journal American Astronomical Society 843:1 (2017) 47

Authors:

Kyle R Stewart, Ariyeh H Maller, Jose Oñorbe, James S Bullock, M Ryan Joung, Julien Devriendt, Daniel Ceverino, Dusan Kereš, Phil F Hopkins, Claude-André Faucher-Giguère

Abstract:

We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy's halo. In all simulations, cold filamentary gas accretion to the halo results in ∼4 times more specific angular momentum in cold halo gas (λcold ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

The new semianalytic code GalICS 2.0 - Reproducing the galaxy stellar mass function and the Tully-Fisher relation simultaneously

(2017)

Authors:

A Cattaneo, J Blaizot, JEG Devriendt, GA Mamon, E Tollet, A Dekel, B Guiderdoni, M Kucukbas, ACR Thob
More details from the publisher

Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies

(2017)

Authors:

Maxime Trebitsch, Jérémy Blaizot, Joakim Rosdahl, Julien Devriendt, Adrianne Slyz
More details from the publisher

Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 470:1 (2017) 224-239

Authors:

M Trebitsch, J Blaizot, J Rosdahl, Julien Devriendt, Adrienne Slyz

Abstract:

Low-mass galaxies are thought to provide the bulk of the ionizing radiation necessary to reionize the Universe. The amount of photons escaping the galaxies is poorly constrained theoretically, and difficult to measure observationally. Yet it is an essential parameter of reionization models.We study in detail how ionizing radiation can leak from high-redshift galaxies. For this purpose, we use a series of high-resolution radiation hydrodynamics simulations, zooming on three dwarf galaxies in a cosmological context. We find that the energy and momentum input from the supernova explosions has a pivotal role in regulating the escape fraction by disrupting dense star-forming clumps, and clearing sightlines in the halo. In the absence of supernovae, photons are absorbed very locally, within the birth clouds of massive stars. We follow the time evolution of the escape fraction and find that it can vary by more than six orders of magnitude. This explains the large scatter in the value of the escape fraction found by previous studies. This fast variability also impacts the observability of the sources of reionization: a survey even as deep as M 1500 = -14 would miss about half of the underlying population of Lyman-continuum emitters.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Implications of Strong Intergalactic Magnetic Fields for Ultra-High-Energy Cosmic-Ray Astronomy

(2017)

Authors:

Rafael Alves Batista, Min-Su Shin, Julien Devriendt, Dmitri Semikoz, Guenter Sigl
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • Current page 42
  • Page 43
  • Page 44
  • Page 45
  • Page 46
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet