High angular momentum halo gas: a feedback and code-independent prediction of LCDM
Astrophysical Journal American Astronomical Society 843:1 (2017) 47
Abstract:
We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy's halo. In all simulations, cold filamentary gas accretion to the halo results in ∼4 times more specific angular momentum in cold halo gas (λcold ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.The new semianalytic code GalICS 2.0 - Reproducing the galaxy stellar mass function and the Tully-Fisher relation simultaneously
(2017)
Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies
(2017)
Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 470:1 (2017) 224-239
Abstract:
Low-mass galaxies are thought to provide the bulk of the ionizing radiation necessary to reionize the Universe. The amount of photons escaping the galaxies is poorly constrained theoretically, and difficult to measure observationally. Yet it is an essential parameter of reionization models.We study in detail how ionizing radiation can leak from high-redshift galaxies. For this purpose, we use a series of high-resolution radiation hydrodynamics simulations, zooming on three dwarf galaxies in a cosmological context. We find that the energy and momentum input from the supernova explosions has a pivotal role in regulating the escape fraction by disrupting dense star-forming clumps, and clearing sightlines in the halo. In the absence of supernovae, photons are absorbed very locally, within the birth clouds of massive stars. We follow the time evolution of the escape fraction and find that it can vary by more than six orders of magnitude. This explains the large scatter in the value of the escape fraction found by previous studies. This fast variability also impacts the observability of the sources of reionization: a survey even as deep as M 1500 = -14 would miss about half of the underlying population of Lyman-continuum emitters.Implications of Strong Intergalactic Magnetic Fields for Ultra-High-Energy Cosmic-Ray Astronomy
(2017)