Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

nIFTy Cosmology: the clustering consistency of galaxy formation models

Monthly Notices of the Royal Astronomical Society Oxford University Press 469:1 (2017) 749-762

Authors:

A Pujol, RA Skibba, E Gaztañaga, A Benson, J Blaizot, R Bower, J Carretero, FJ Castander, A Cattaneo, SA Cora, DJ Croton, W Cui, D Cunnama, GD Lucia, Julien Devriendt, PJ Elahi, A Font, F Fontanot, J Garcia-Bellido, ID Gargiulo, V Gonzalez-Perez, J Helly, BMB Henriques, M Hirschmann, A Knebe, J Lee, GA Mamon, P Monaco, J Onions, ND Padilla, FR Pearce, C Power, RS Somerville, C Srisawat, PA Thomas, E Tollet, CA Vega-Martínez, SK Yi

Abstract:

We present a clustering comparison of 12 galaxy formation models (including Semi-Analytic Models (SAMs) and Halo Occupation Distribution (HOD) models) all run on halo catalogues and merger trees extracted from a single {\Lambda}CDM N-body simulation. We compare the results of the measurements of the mean halo occupation numbers, the radial distribution of galaxies in haloes and the 2-Point Correlation Functions (2PCF). We also study the implications of the different treatments of orphan (galaxies not assigned to any dark matter subhalo) and non-orphan galaxies in these measurements. Our main result is that the galaxy formation models generally agree in their clustering predictions but they disagree significantly between HOD and SAMs for the orphan satellites. Although there is a very good agreement between the models on the 2PCF of central galaxies, the scatter between the models when orphan satellites are included can be larger than a factor of 2 for scales smaller than 1 Mpc/h. We also show that galaxy formation models that do not include orphan satellite galaxies have a significantly lower 2PCF on small scales, consistent with previous studies. Finally, we show that the 2PCF of orphan satellites is remarkably different between SAMs and HOD models. Orphan satellites in SAMs present a higher clustering than in HOD models because they tend to occupy more massive haloes. We conclude that orphan satellites have an important role on galaxy clustering and they are the main cause of the differences in the clustering between HOD models and SAMs.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

The XXL survey: first results and future

Astronomische Nachrichten Wiley 338:2-3 (2017) 334-341

Authors:

M Pierre, C Adami, M Birkinshaw, Julien Devriendt, Matthew J Jarvis

Abstract:

The XXL survey currently covers two 25 deg2 patches with XMM observations of ~ 10ks. We summarise the scientific results associated with the first release of the XXL data set, that occurred mid 2016. We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray (z < 2) cluster, (z < 4) AGN and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-λ observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the z > 1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.

More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

The f(ℛ) halo mass function in the cosmic web

Journal of Cosmology and Astroparticle Physics Institute of Physics 2017:03 (2017) 012

Authors:

Francesca V Braun-Bates, Hans A Winther, David Alonso, Julien Devriendt

Abstract:

An important indicator of modified gravity is the effect of the local environment on halo properties. This paper examines the influence of the local tidal structure on the halo mass function, the halo orientation, spin and the concentration-mass relation. We use the excursion set formalism to produce a halo mass function conditional on large-scale structure. Our simple model agrees well with simulations on large scales at which the density field is linear or weakly non-linear. Beyond this, our principal result is that f() does affect halo abundances, the halo spin parameter and the concentration-mass relationship in an environment-independent way, whereas we find no appreciable deviation from \text{ΛCDM} for the mass function with fixed environment density, nor the alignment of the orientation and spin vectors of the halo to the eigenvectors of the local cosmic web. There is a general trend for greater deviation from \text{ΛCDM} in underdense environments and for high-mass haloes, as expected from chameleon screening.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties

(2017)

Authors:

Clotilde Laigle, Christophe Pichon, Stephane Arnouts, Henry Joy McCracken, Yohan Dubois, Julien Devriendt, Adrianne Slyz, Damien Le Borgne, Aurelien Benoit-Levy, Ho Seong Hwang, Olivier Ilbert, Katarina Kraljic, Nicola Malavasi, Changbom Park, Didier Vibert
More details from the publisher

The $f(R)$ halo mass function in the cosmic web

(2017)

Authors:

Francesca von Braun-Bates, Hans A Winther, David Alonso, Julien Devriendt
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • Current page 43
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet