How active galactic nucleus feedback and metal cooling shape cluster entropy profiles
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 417:3 (2011) 1853-1870
The environment and redshift dependence of accretion on to dark matter haloes and subhaloes
Monthly Notices of the Royal Astronomical Society 417:1 (2011) 666-680
Abstract:
A dark-matter-only Horizon Project simulation is used to investigate the environment and redshift dependences of accretion on to both haloes and subhaloes. These objects grow in the simulation via mergers and via accretion of diffuse non-halo material, and we measure the combined signal from these two modes of accretion. It is found that the halo accretion rate varies less strongly with redshift than predicted by the Extended Press-Schechter formalism and is dominated by minor merger and diffuse accretion events at z= 0, for all haloes. These latter growth mechanisms may be able to drive the radio-mode feedback hypothesised for recent galaxy-formation models, and have both the correct accretion rate and the form of cosmological evolution. The low-redshift subhalo accretors in the simulation form a mass-selected subsample safely above the mass resolution limit that reside in the outer regions of their host, with ∼70 per cent beyond their host's virial radius, where they are probably not being significantly stripped of mass. These subhaloes accrete, on average, at higher rates than haloes at low redshift and we argue that this is due to their enhanced clustering at small scales. At cluster scales, the mass accretion rate on to haloes and subhaloes at low redshift is found to be only weakly dependent on environment, and we confirm that at z∼ 2 haloes accrete independently of their environment at all scales, as reported by other authors. By comparing our results with an observational study of black hole growth, we support previous suggestions that at z > 1, dark matter haloes and their associated central black holes grew coevally, but show that by the present-day, dark matter haloes could be accreting at fractional rates that are up to a factor of 3 - 4 higher than their associated black holes. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.AGN feedback using AMR cosmological simulations
ArXiv 1109.1457 (2011)
Abstract:
Feedback processes are thought to solve some of the long-standing issues of the numerical modelling of galaxy formation: over-cooling, low angular momentum, massive blue galaxies, extra-galactic enrichment, etc. The accretion of gas onto super-massive black holes in the centre of massive galaxies can release tremendous amounts of energy to the surrounding medium. We show, with cosmological Adaptive Mesh Refinement simulations, how the growth of black holes is regulated by the feedback from Active Galactic Nuclei using a new dual jet/heating mechanism. We discuss how this large amount of feedback is able to modify the cold baryon content of galaxies, and perturb the properties of the hot plasma in their vicinity.Self-regulated growth of supermassive black holes by a dual jet/heating AGN feedback mechanism: methods, tests and implications for cosmological simulations
ArXiv 1108.011 (2011)