Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

The impact of ISM turbulence, clustered star formation and feedback on galaxy mass assembly through cold flows and mergers

(2011)

Authors:

Leila C Powell, Frederic Bournaud, Damien Chapon, Julien Devriendt, Adrianne Slyz, Romain Teyssier
More details from the publisher

Most massive halos with Gumbel Statistics

(2011)

Authors:

Olaf Davis, Julien Devriendt, Stéphane Colombi, Joe Silk, Christophe Pichon
More details from the publisher

Most massive halos with Gumbel Statistics

ArXiv 1101.2896 (2011)

Authors:

Olaf Davis, Julien Devriendt, Stéphane Colombi, Joe Silk, Christophe Pichon

Abstract:

We present an analytical calculation of the extreme value statistics for dark matter halos - that is, the probability distribution of the most massive halo within some region of the universe of specified shape and size. Our calculation makes use of the counts-in-cells formalism for the correlation functions, and the halo bias derived from the Sheth-Tormen mass function. We demonstrate the power of the method on spherical regions, comparing the results to measurements in a large cosmological dark matter simulation and achieving good agreement. Particularly good fits are obtained for the most likely value of the maximum mass and for the high-mass tail of the distribution, relevant in constraining cosmologies by observations of most massive clusters.
Details from ArXiV
More details from the publisher
More details

How Does Feedback Affect Milky Way Satellite Formation?

ArXiv 1101.2232 (2011)

Authors:

Sam Geen, Adrianne Slyz, Julien Devriendt

Abstract:

We use sub-parsec resolution hydrodynamic resimulations of a Milky Way (MW) like galaxy at high redshift to investigate the formation of the MW satellite galaxies. More specifically, we assess the impact of supernova feedback on the dwarf progenitors of these satellite, and the efficiency of a simple instantaneous reionisation scenario in suppressing star formation at the low-mass end of this dwarf distribution. Identifying galaxies in our high redshift simulation and tracking them to z=0 using a dark matter halo merger tree, we compare our results to present-day observations and determine the epoch at which we deem satellite galaxy formation must be completed. We find that only the low-mass end of the population of luminous subhalos of the Milky-Way like galaxy is not complete before redshift 8, and that although supernovae feedback reduces the stellar mass of the low-mass subhalos (log(M/Msolar) < 9), the number of surviving satellites around the Milky-Way like galaxy at z = 0 is the same in the run with or without supernova feedback. If a luminous halo is able to avoid accretion by the Milky-Way progenitor before redshift 3, then it is likely to survive as a MW satellite to redshift 0.
Details from ArXiV
More details from the publisher
More details

How Does Feedback Affect Milky Way Satellite Formation?

(2011)

Authors:

Sam Geen, Adrianne Slyz, Julien Devriendt
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 62
  • Page 63
  • Page 64
  • Page 65
  • Current page 66
  • Page 67
  • Page 68
  • Page 69
  • Page 70
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet