Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

Forming stars on an exponential timescale: the key to exponential stellar profiles in disc galaxies?

Monthly Notices of the Royal Astronomical Society 333 (2002) 894-910

Authors:

AD Slyz, Julien Devriendt, Joseph Silk, Andreas Burkert
More details from the publisher
More details
Details from ArXiV

Source-lens clustering effects on the skewness of the lensing convergence

Monthly Notices of the Royal Astronomical Society 330:2 (2002) 365-377

Authors:

T Hamana, ST Colombi, A Thion, JEGT Devriendt, Y Mellier, F Bernardeau

Abstract:

potentials causes a systematic effect on measurements of cosmic shear statistics, known as the source-lens clustering (SLC) effect. The SLC effect on the skewness of lensing convergence, S3, is examined using a non-linear semi-analytic approach and is checked against numerical simulations. The semi-analytic calculations have been performed in a wide variety of generic models for the redshift distribution of source galaxies and power-law models for the bias parameter between the galaxy and dark matter distributions. The semi-analytic predictions are tested successfully against numerical simulations. We find the relative amplitude of the SLC effect on S3 to be of the order of 5 -40 per cent. It depends significantly on the redshift distribution of sources and on the way in which the bias parameter evolves. We discuss possible measurement strategies to minimize the SLC effects.
More details from the publisher
More details

Merger histories in warm dark matter structure formation scenarios

Monthly Notices of the Royal Astronomical Society 329:4 (2002) 813-828

Authors:

JEG Devriendt, Knebe, A., Mahmood, A., Silk, J.
More details from the publisher
More details
Details from ArXiV

Galics: Capturing the Panchromaticity of Galaxies

Chapter in The Evolution of Galaxies, Springer Nature (2002) 505-508
More details from the publisher

Forming stars on a viscous timescale: the key to exponential stellar profiles in disk galaxies?

(2001)

Authors:

A Slyz, J Devriendt, J Silk, A Burkert
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 87
  • Page 88
  • Page 89
  • Page 90
  • Current page 91
  • Page 92
  • Page 93
  • Page 94
  • Page 95
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet