Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Julien Devriendt

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Galaxy formation and evolution
julien.devriendt@physics.ox.ac.uk
Telephone: 01865 (2)73307
Denys Wilkinson Building, room 555D
  • About
  • Teaching
  • Publications

GALICS: Capturing the panchromaticity of galaxies

Astrophysics and Space Science 281:1-2 (2002) 505-508

Abstract:

This contribution describes results obtained with the GALICS model (for Galaxies In Cosmological Simulations), which is a hybrid model for hierarchical galaxy formation studies, combining the outputs of large cosmological N-body simulations with simple, semi-analytic recipes to describe the fate of the baryons within dark matter halos. Designed to predict the overall statistical properties of galaxies, with special emphasis on the panchromatic spectral energy distribution emitted by galaxies in the UV/optical and IR/submm wavelength ranges, such an approach can be used to predict the galaxy luminosity function evolution from the ultraviolet to far infrared, along with individual galaxies star formation histories.
More details from the publisher
More details

Collision-induced galaxy formation: semi-analytical model and multi-wavelength predictions

(2002)

Authors:

Christophe Balland, Julien EG Devriendt, Joe Silk
More details from the publisher

Non-Standard Structure Formation Scenarios

(2002)

Authors:

Alexander Knebe, Brett Little, Ranty Islam, Julien Devriendt, Asim Mahmood, Joe Silk
More details from the publisher

Forming stars on an exponential timescale: the key to exponential stellar profiles in disc galaxies?

Monthly Notices of the Royal Astronomical Society 333 (2002) 894-910

Authors:

AD Slyz, Julien Devriendt, Joseph Silk, Andreas Burkert
More details from the publisher
More details
Details from ArXiV

Source-lens clustering effects on the skewness of the lensing convergence

Monthly Notices of the Royal Astronomical Society 330:2 (2002) 365-377

Authors:

T Hamana, ST Colombi, A Thion, JEGT Devriendt, Y Mellier, F Bernardeau

Abstract:

potentials causes a systematic effect on measurements of cosmic shear statistics, known as the source-lens clustering (SLC) effect. The SLC effect on the skewness of lensing convergence, S3, is examined using a non-linear semi-analytic approach and is checked against numerical simulations. The semi-analytic calculations have been performed in a wide variety of generic models for the redshift distribution of source galaxies and power-law models for the bias parameter between the galaxy and dark matter distributions. The semi-analytic predictions are tested successfully against numerical simulations. We find the relative amplitude of the SLC effect on S3 to be of the order of 5 -40 per cent. It depends significantly on the redshift distribution of sources and on the way in which the bias parameter evolves. We discuss possible measurement strategies to minimize the SLC effects.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 85
  • Page 86
  • Page 87
  • Page 88
  • Current page 89
  • Page 90
  • Page 91
  • Page 92
  • Page 93
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet