Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Dharmalingam Prabhakaran

Researcher

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Synthesis and crystal growth
dharmalingam.prabhakaran@physics.ox.ac.uk
Telephone: 01865 (2)72270,01865 (2)72351,01865 (2)72341
Clarendon Laboratory, room 177,377,373
  • About
  • Publications

Correlated oxygen displacements and phonon mode changes in LaCoO3 single crystal

Physica B Condensed Matter Elsevier 536 (2018) 597-599

Authors:

VV Sikolenko, SL Molodtsov, M Izquierdo, IO Troyanchuk, D Karpinsky, SI Tiutiunnikov, E Efimova, D Prabhakaran, D Novoselov, V Efimov
More details from the publisher
More details

Magnetic ground state and magnon-phonon interaction in multiferroic h−YMnO3

Physical Review B American Physical Society 97 (2018) 134304

Authors:

SL Holm, A Kreisel, TK Schäffer, A Bakke, M Bertelsen, UB Hansen, M Retuerto, J Larsen, Dharmalingam Prabhakaran, PP Deen, Z Yamani, JO Birk, U Stuhr, C Niedermayer, AL Fennell, BM Andersen, K Lefmann

Abstract:

Inelastic neutron scattering has been used to study the magnetoelastic excitations in the multiferroic manganite hexagonal YMnO3. An avoided crossing is found between magnon and phonon modes close to the Brillouin zone boundary in the (a,b) plane. Neutron polarization analysis reveals that this mode has mixed magnon-phonon character. An external magnetic field along the c axis is observed to cause a linear field-induced splitting of one of the spin-wave branches. A theoretical description is performed, using a Heisenberg model of localized spins, acoustic phonon modes, and a magnetoelastic coupling via the single-ion magnetostriction. The model quantitatively reproduces the dispersion and intensities of all modes in the full Brillouin zone, describes the observed magnon-phonon hybridized modes, and quantifies the magnetoelastic coupling. The combined information, including the field-induced magnon splitting, allows us to exclude several of the earlier proposed models and point to the correct magnetic ground state symmetry, and provides an effective dynamic model relevant for the multiferroic hexagonal manganites.
More details from the publisher
Details from ORA
More details

Spin dynamics and exchange interactions in CuO measured by neutron scattering

Physical Review B American Physical Society 97:14 (2018) 144401

Authors:

Henrik Jacobsen, SM Gaw, Andrew J Princep, E Hamilton, S Tóth, RA Ewings, M Enderle, EM Hétroy Wheeler, Dharmalingam Prabhakaran, Andrew Boothroyd

Abstract:

The magnetic properties of CuO encompass several contemporary themes in condensed matter physics, including quantum magnetism, magnetic frustration, magnetically-induced ferroelectricity and orbital currents. Here we report polarized and unpolarized neutron inelastic scattering measurements which provide a comprehensive map of the cooperative spin dynamics in the low temperature antiferromagnetic (AFM) phase of CuO throughout much of the Brillouin zone. At high energies $(E \gtrsim 100\,meV)$ the spectrum displays continuum features consistent with the des Cloizeax--Pearson dispersion for an ideal $S=\frac{1}{2}$ Heisenberg AFM chain. At lower energies the spectrum becomes more three-dimensional, and we find that a linear spin-wave model for a Heisenberg AFM provides a very good description of the data, allowing for an accurate determination of the relevant exchange constants in an effective spin Hamiltonian for CuO. In the high temperature helicoidal phase, there are features in the measured low-energy spectrum that we could not reproduce with a spin-only model. We discuss how these might be associated with the magnetically-induced multiferroic behavior observed in this phase.
More details from the publisher
Details from ORA
More details

Pressure effect on magnetic susceptibility of LaCoO3

Low Temperature Physics AIP Publishing 44:4 (2018) 328-333

Authors:

AS Panfilov, GE Grechnev, IP Zhuravleva, AA Lyogenkaya, VA Pashchenko, BN Savenko, D Novoselov, D Prabhakaran, IO Troyanchuk
More details from the publisher
More details

Folded superstructure and degeneracy-enhanced band gap in the weak-coupling charge density wave system 2H−TaSe2

Physical Review B American Physical Society 97 (2018)

Authors:

Yiwei Li, J Jiang, HF Yang, Dharmalingam Prabhakaran, ZK Liu, LX Yang, Yulin Chen

Abstract:

Using high-resolution angle-resolved photoemission spectroscopy (ARPES), we have mapped out the reconstructed electronic structure in the commensurate charge-density-wave (CDW) state of quasi-two-dimensional transition metal dichalcogenide 2H-TaSe2. The observation of the fine structure near Brillouin zone (BZ) center supplements the picture of Fermi surface folding in the 3×3 CDW state. In addition to the anisotropic CDW band gaps that energetically stabilize the system at the Fermi level in the first-order lock-in transition, we found band reconstruction at high binding energy, which can be well explained by the hybridization between main bands (MBs) and folded bands (FBs). Furthermore, in contrast to the perfectly nested quasi-one-dimensional system, triple-nesting-vector-induced CDW FBs increase the degeneracy of the band crossing and thus further enlarge the magnitude of band gap at certain momentum-energy positions. The visualization and modeling of CDW gaps in momentum-energy space reconciles the long-lasting controversy on the gap magnitude and suggests a weak-coupling Peierls physics in this system.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet