Stability of charge-stripe ordered La2−xSrxNiO4+δ at one third doping
Physica B: Condensed Matter Elsevier 536 (2017) 720-725
Abstract:
The stability of charge ordered phases is doping dependent, with different materials having particularly stable ordered phases. In the half filled charge ordered phases of the cuprates this occurs at one eighth doping, whereas in charge-stripe ordered La2−xSrxNiO4+δ there is enhanced stability at one third doping. In this paper we discuss the known details of the charge-stripe order in La2−x SrxNiO4+δ, and how these properties lead to the one third doping stability.The full magnon spectrum of yttrium iron garnet
npj Quantum Materials Springer Nature 2:1 (2017) 63
Abstract:
The magnetic insulator yttrium iron garnet can be grown with exceptional quality, has a ferrimagnetic transition temperature of nearly 600 K, and is used in microwave and spintronic devices that can operate at room temperature. The most accurate prior measurements of the magnon spectrum date back nearly 40 years, but cover only 3 of the lowest energy modes out of 20 distinct magnon branches. Here we have used time-of-flight inelastic neutron scattering to measure the full magnon spectrum throughout the Brillouin zone. We find that the existing models of the excitation spectrum fail to describe the optical magnon modes. Using a very general spin Hamiltonian, we show that the magnetic interactions are both longer-ranged and more complex than was previously understood. The results provide the basis for accurate microscopic models of the finite temperature magnetic properties of yttrium iron garnet, necessary for next-generation electronic devices.Terahertz spectroscopy of anisotropic materials using beams with rotatable polarization
Scientific Reports Springer Nature 7:1 (2017) 12337
Abstract:
We introduce a polarization-resolved terahertz time-domain spectrometer with a broadband (0.3-2.5 THz), rotatable THz polarization state, and which exhibits minimal change in the electric field amplitude and polarization state upon rotation. This was achieved by rotating an interdigitated photoconductive emitter, and by detecting the orthogonal components of the generated THz pulse via electro-optic sampling. The high precision (<0.1°) and accuracy (<1.0°) of this approach is beneficial for the study of anisotropic materials without rotating the sample, which can be impractical, for instance for samples held in a cryostat. The versatility of this method was demonstrated by studying the anisotropic THz optical properties of uniaxial and biaxial oxide crystals. For uniaxial ZnO and LaAlO3, which have minimal THz absorption across the measurement bandwidth, the orientations of the eigenmodes of propagation were conveniently identified as the orientation angles that produced a transmitted THz pulse with zero ellipticity, and the birefringence was quantified. In CuO, a multiferroic with improper ferroelectricity, the anisotropic THz absorption created by an electromagnon was investigated, mapping its selection rule precisely. For this biaxial crystal, which has phonon and electromagnon absorption, the polarization eigenvectors exhibited chromatic dispersion, as a result of the monoclinic crystal structure and the frequency-dependent complex refractive index.Anomalous behavior of displacement correlation function and strain in lanthanum cobalt oxide analyzed both from X-ray powder diffraction and EXAFS data
POWDER DIFFRACTION 32 (2017) S151-S154
Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore $Yb_{2}Ti_{2}O_{7}$ in a Magnetic Field
Physical Review Letters American Physical Society 119:5 (2017) 057203