Correlated oxygen displacements and phonon mode changes in LaCoO3 single crystal
Physica B Condensed Matter Elsevier 536 (2018) 597-599
Magnetic ground state and magnon-phonon interaction in multiferroic h−YMnO3
Physical Review B American Physical Society 97 (2018) 134304
Abstract:
Inelastic neutron scattering has been used to study the magnetoelastic excitations in the multiferroic manganite hexagonal YMnO3. An avoided crossing is found between magnon and phonon modes close to the Brillouin zone boundary in the (a,b) plane. Neutron polarization analysis reveals that this mode has mixed magnon-phonon character. An external magnetic field along the c axis is observed to cause a linear field-induced splitting of one of the spin-wave branches. A theoretical description is performed, using a Heisenberg model of localized spins, acoustic phonon modes, and a magnetoelastic coupling via the single-ion magnetostriction. The model quantitatively reproduces the dispersion and intensities of all modes in the full Brillouin zone, describes the observed magnon-phonon hybridized modes, and quantifies the magnetoelastic coupling. The combined information, including the field-induced magnon splitting, allows us to exclude several of the earlier proposed models and point to the correct magnetic ground state symmetry, and provides an effective dynamic model relevant for the multiferroic hexagonal manganites.Spin dynamics and exchange interactions in CuO measured by neutron scattering
Physical Review B American Physical Society 97:14 (2018) 144401
Abstract:
The magnetic properties of CuO encompass several contemporary themes in condensed matter physics, including quantum magnetism, magnetic frustration, magnetically-induced ferroelectricity and orbital currents. Here we report polarized and unpolarized neutron inelastic scattering measurements which provide a comprehensive map of the cooperative spin dynamics in the low temperature antiferromagnetic (AFM) phase of CuO throughout much of the Brillouin zone. At high energies $(E \gtrsim 100\,meV)$ the spectrum displays continuum features consistent with the des Cloizeax--Pearson dispersion for an ideal $S=\frac{1}{2}$ Heisenberg AFM chain. At lower energies the spectrum becomes more three-dimensional, and we find that a linear spin-wave model for a Heisenberg AFM provides a very good description of the data, allowing for an accurate determination of the relevant exchange constants in an effective spin Hamiltonian for CuO. In the high temperature helicoidal phase, there are features in the measured low-energy spectrum that we could not reproduce with a spin-only model. We discuss how these might be associated with the magnetically-induced multiferroic behavior observed in this phase.Pressure effect on magnetic susceptibility of LaCoO3
Low Temperature Physics AIP Publishing 44:4 (2018) 328-333
Folded superstructure and degeneracy-enhanced band gap in the weak-coupling charge density wave system 2H−TaSe2
Physical Review B American Physical Society 97 (2018)