Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Dharmalingam Prabhakaran

Researcher

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Synthesis and crystal growth
dharmalingam.prabhakaran@physics.ox.ac.uk
Telephone: 01865 (2)72270,01865 (2)72351,01865 (2)72341
Clarendon Laboratory, room 177,377,373
  • About
  • Publications

Selective probing of magnetic order on Tb and Ir sites in stuffed Tb2Ir2O7 using resonant x-ray scattering

Journal of Physics: Condensed Matter IOP Publishing 31:34 (2019) 344001

Authors:

C Donnerer, MC Rahn, E Schierle, RS Perry, LSI Veiga, G Nisbet, SP Collins, Dharmalingam Prabhakaran, Andrew Boothroyd, DF McMorrow

Abstract:

We study the magnetic structure of the 'stuffed' (Tb-rich) pyrochlore iridate Tb2+x Ir2-x O7-y  (x ∼ 0.18), using resonant elastic x-ray scattering (REXS). In order to disentangle contributions from Tb and Ir magnetic sublattices, experiments were performed at the Ir L 3 and Tb M 5 edges, which provide selective sensitivity to Ir 5d and Tb 4f  magnetic moments, respectively. At the Ir L 3 edge, we found the onset of long-range [Formula: see text] magnetic order below [Formula: see text] K, consistent with the expected signal of all-in all-out (AIAO) magnetic order. Using a single-ion model to calculate REXS cross-sections, we estimate an ordered magnetic moment of [Formula: see text] at 5 K. At the Tb M 5 edge, long-range [Formula: see text] magnetic order appeared below  ∼[Formula: see text] K, also consistent with an AIAO magnetic structure on the Tb site. Additional insight into the magnetism of the Tb sublattice is gleaned from measurements at the M 5 edge in applied magnetic fields up to 6 T, which is found to completely suppress the Tb AIAO magnetic order. In zero applied field, the observed gradual onset of the Tb sublattice magnetisation with temperature suggests that it is induced by the magnetic order on the Ir site. The persistence of AIAO magnetic order, despite the greatly reduced ordering temperature and moment size compared to stoichiometric Tb2Ir2O7, for which [Formula: see text] K and [Formula: see text], indicates that stuffing could be a viable means of tuning the strength of electronic correlations, thereby potentially offering a new strategy to achieve topologically non-trivial band crossings in pyrochlore iridates.
More details from the publisher
Details from ORA
More details
More details

Nuclear spin assisted quantum tunnelling of magnetic monopoles in spin ice.

Nature communications 10:1 (2019) 1509

Authors:

C Paulsen, SR Giblin, E Lhotel, D Prabhakaran, K Matsuhira, G Balakrishnan, ST Bramwell

Abstract:

Extensive work on single molecule magnets has identified a fundamental mode of relaxation arising from the nuclear-spin assisted quantum tunnelling of nearly independent and quasi-classical magnetic dipoles. Here we show that nuclear-spin assisted quantum tunnelling can also control the dynamics of purely emergent excitations: magnetic monopoles in spin ice. Our low temperature experiments were conducted on canonical spin ice materials with a broad range of nuclear spin values. By measuring the magnetic relaxation, or monopole current, we demonstrate strong evidence that dynamical coupling with the hyperfine fields bring the electronic spins associated with magnetic monopoles to resonance, allowing the monopoles to hop and transport magnetic charge. Our result shows how the coupling of electronic spins with nuclear spins may be used to control the monopole current. It broadens the relevance of the assisted quantum tunnelling mechanism from single molecular spins to emergent excitations in a strongly correlated system.
More details from the publisher
More details
More details

Spin-charge-lattice coupling in quasi-one-dimensional Ising spin chain CoNb2O6

Journal of Physics: Condensed Matter IOP Publishing 31:19 (2019) 195802

Authors:

M Nandi, Dharmalingam Prabhakaran, P Mandal

Abstract:

Magnetization, magnetostriction and dielectric constant measurements are performed on single crystals of quasi-one-dimensional Ising spin chain CoNb$_{2}$O$_{6}$ at temperatures below and above the antiferromagnetic phase transition. Field-induced magnetic transitions are clearly reflected in magnetodielectric and magnetostriction data. Sharp anomalies are observed around the critical fields of antiferromagnetic to ferrimagnetic and ferrimagnetic to saturated-paramagnetic transition in both magnetodielectric and magnetostriction experiments. Detailed analysis of temperature and field dependence of dielectric constant and magnetostriction suggests that spins are coupled with lattice as well as charges in CoNb$_{2}$O$_{6}$. Below the antiferromagnetic transition temperature, the overall resemblance in anomalies, observed in various physical parameters such as magnetization, dielectric constant, magnetostriction and magnetic entropy change gives a deeper insight about the influence of spin configuration on these parameters in CoNb$_{2}$O$_{6}$.
More details from the publisher
Details from ORA
More details
More details

Phase transitions in few-monolayer spin ice films.

Nature communications 10:1 (2019) 1219

Authors:

L Bovo, CM Rouleau, D Prabhakaran, ST Bramwell

Abstract:

Vertex models are an important class of statistical mechanical system that admit exact solutions and exotic physics. Applications include water ice, ferro- and antiferro-electrics, spin ice and artificial spin ice. Here we show that it is possible to engineer spin ice films with atomic-layer precision down to the monolayer limit. Specific heat measurements show that these films, which have a fundamentally different symmetry to bulk spin ice, realise systems close to the two-dimensional F-model, with exotic phase transitions on topologically-constrained configurational manifolds. Our results show how spin ice thin films can release the celebrated Pauling entropy of spin ice without an anomaly in the specific heat. They also significantly expand the class of vertex models available to experiment.
More details from the publisher
More details
More details

Spin Jahn-Teller antiferromagnetism in CoTi$_2$O$_5$

Physical Review B American Physical Society 99 (2019) 064403

Authors:

Franziska Kirschner, Roger Johnson, Franz Lang, DD Khalyavin, P Manuel, T Lancaster, Dharmalingam Prabhakaran, Stephen Blundell

Abstract:

We have used neutron powder diffraction to solve the magnetic structure of orthorhombic CoTi$_2$O$_5$, showing that the long-range ordered state below 26 K identified in our muon-spin rotation experiments is antiferromagnetic with propagation vector ${\bf k}=(\pm \frac{1}{2}, \frac{1}{2}, 0)$ and moment of 2.72(1)$\mu_{\rm B}$ per Co$^{2+}$ ion. This long range magnetic order is incompatible with the experimentally determined crystal structure because the imposed symmetry completely frustrates the exchange coupling. We conclude that the magnetic transition must therefore be associated with a spin Jahn-Teller effect which lowers the structural symmetry and thereby relieves the frustration. These results show that CoTi$_2$O$_5$ is a highly unusual low symmetry material exhibiting a purely spin-driven lattice distortion critical to the establishment of an ordered magnetic ground state.
More details
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Current page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet