Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Dharmalingam Prabhakaran

Researcher

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Synthesis and crystal growth
dharmalingam.prabhakaran@physics.ox.ac.uk
Telephone: 01865 (2)72270,01865 (2)72351,01865 (2)72341
Clarendon Laboratory, room 177,377,373
  • About
  • Publications

Inverse order-disorder transition of charge stripes

Physical Review B American Physical Society (APS) 92:20 (2015) 205114

Authors:

Shu-Han Lee, Yen-Chung Lai, Chao-Hung Du, Alexander F Siegenfeld, Ying-Jer Kao, Peter D Hatton, D Prabhakaran, Yixi Su, Di-Jing Huang
More details from the publisher

Terahertz field control of in-plane orbital order in La0.5Sr1.5MnO4

Nature Communications Springer Nature 6:1 (2015) 8175

Authors:

Timothy A Miller, Ravindra W Chhajlany, Luca Tagliacozzo, Bertram Green, Sergey Kovalev, Dharmalingam Prabhakaran, Maciej Lewenstein, Michael Gensch, Simon Wall
More details from the publisher
More details
More details

Weyl semimetal phase in the non-centrosymmetric compound TaAs

Nature Physics 11:9 (2015) 728-732

Authors:

LX Yang, ZK Liu, Y Sun, H Peng, HF Yang, T Zhang, B Zhou, Y Zhang, YF Guo, M Rahn, D Prabhakaran, Z Hussain, SK Mo, C Felser, B Yan, YL Chen

Abstract:

Three-dimensional (3D) topological Weyl semimetals (TWSs) represent a state of quantum matter with unusual electronic structures that resemble both a '3D graphene' and a topological insulator. Their electronic structure displays pairs of Weyl points (through which the electronic bands disperse linearly along all three momentum directions) connected by topological surface states, forming a unique ark-like Fermi surface (FS). Each Weyl point is chiral and contains half the degrees of freedom of a Dirac point, and can be viewed as a magnetic monopole in momentum space. By performing angle-resolved photoemission spectroscopy on the non-centrosymmetric compound TaAs, here we report its complete band structure, including the unique Fermi-arc FS and linear bulk band dispersion across the Weyl points, in agreement with the theoretical calculations. This discovery not only confirms TaAs as a 3D TWS, but also provides an ideal platform for realizing exotic physical phenomena (for example, negative magnetoresistance, chiral magnetic effects and the quantum anomalous Hall effect) which may also lead to novel future applications.
More details from the publisher

Weyl semimetal phase in the non-centrosymmetric compound TaAs

Nature Physics Springer Nature 11:9 (2015) 728-732

Authors:

LX Yang, ZK Liu, Y Sun, H Peng, HF Yang, T Zhang, B Zhou, Y Zhang, YF Guo, M Rahn, D Prabhakaran, Z Hussain, S-K Mo, C Felser, B Yan, YL Chen
More details from the publisher

Evidence of quantum dimer excitations in Sr3Ir2O7

Physical Review B American Physical Society (APS) 92:2 (2015) 024405

Authors:

M Moretti Sala, V Schnells, S Boseggia, L Simonelli, A Al-Zein, JG Vale, L Paolasini, EC Hunter, RS Perry, D Prabhakaran, AT Boothroyd, M Krisch, G Monaco, HM Rønnow, DF McMorrow, F Mila
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • Current page 26
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet