Femtosecond Dynamics of the Collinear-to-Spiral Antiferromagnetic Phase Transition in CuO
PHYSICAL REVIEW LETTERS 108:3 (2012) ARTN 037203
Probing magnetic order in LiMPO4 (M= Ni, Co, Fe) and lithium diffusion in Lix FePO4
Physical Review B - Condensed Matter and Materials Physics 84:17 (2011)
Abstract:
Muon spin relaxation measurements are reported on three members of the LixMPO4 series. The magnetic properties of stoichiometric samples with M= Ni, Co, Fe were investigated at low temperature. In LiNiPO 4 we observe different forms of the muon decay asymmetry in the commensurate and incommensurate antiferromagnetic phases, accompanied by a change in the temperature dependence of the muon oscillation frequency. In LiCoPO4 the form of the muon decay asymmetry indicates that the correlation between layers decreases as the Néel temperature is approached from below. LiFePO4 shows more conventional behavior, typical for a three-dimensional antiferromagnet. Measurements on Li xFePO4 with x=0.8,0.9, and 1 show evidence for lithium diffusion below ∼250 K and muon diffusion dominating the form of the relaxation at higher temperature. The thermally activated form of the observed hopping rate suggests an activation barrier for lithium diffusion of ∼100 meV and a diffusion constant of DLi∼10-10to10 -9 cm2 s-1 at room temperature. © 2011 American Physical Society.Low-moment magnetism in the double perovskites Ba2 MOsO 6 (M=Li,Na)
Physical Review B - Condensed Matter and Materials Physics 84:14 (2011)
Abstract:
The magnetic ground states of the isostructural double perovskites Ba 2NaOsO6 and Ba2LiOsO6 are investigated with muon-spin relaxation. In Ba2NaOsO6 long-range magnetic order is detected via the onset of a spontaneous muon-spin precession signal below Tc=7.2±0.2K, while in Ba 2LiOsO6 a static but spatially disordered internal field is found below 8 K. A probabilistic argument is used to show from the observed precession frequencies that the magnetic ground state in Ba 2NaOsO6 is most likely to be low-moment (≈0.2μB) ferromagnetism and not canted antiferromagnetism. Ba2LiOsO6 is antiferromagnetic and we find a spin-flop transition at 5.5T. A reduced osmium moment is common to both compounds, probably arising from a combination of spin-orbit coupling and frustration. © 2011 American Physical Society.Cu3 Nb2 O8 : A multiferroic with chiral coupling to the crystal structure
Physical Review Letters 107:13 (2011)
Abstract:
By combining bulk properties, neutron diffraction, and nonresonant x-ray diffraction measurements, we demonstrate that the new multiferroic Cu 3Nb2O8 becomes polar simultaneously with the appearance of generalized helicoidal magnetic ordering. The electrical polarization is oriented perpendicularly to the common plane of rotation of the spins-an observation that cannot be reconciled with the conventional theory developed for cycloidal multiferroics. Our results are consistent with coupling between a macroscopic structural rotation, which is allowed in the paramagnetic group, and magnetically induced structural chirality. © 2011 American Physical Society.Spin-state transition in La1-x Srx CoO3 single crystals
AIP Conference Proceedings 1349:PART A (2011) 131-132