Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Dharmalingam Prabhakaran

Researcher

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Synthesis and crystal growth
dharmalingam.prabhakaran@physics.ox.ac.uk
Telephone: 01865 (2)72270,01865 (2)72351,01865 (2)72341
Clarendon Laboratory, room 177,377,373
  • About
  • Publications

Bilayer manganites reveal polarons in the midst of a metallic breakdown

Nature Physics (2011)

Authors:

F Massee, S de Jong, Y Huang, WK Siu, I Santoso, A Mans, AT Boothroyd, D Prabhakaran, R Follath, A Varykhalov, L Patthey, M Shi, JB Goedkoop, MS Golden

Abstract:

The origin of colossal magnetoresistance (CMR) in manganese oxides is among the most challenging problems in condensed-matter physics today. The true nature of the low-temperature electronic phase of these materials is heavily debated. By combining photoemission and tunnelling data, we show that in the archetypal bilayer system La 2-2x Sr 1+2x Mn 2 O 7 , polaronic degrees of freedom win out across the CMR region of the phase diagram. This means that the generic ground state of bilayer manganites supports a vanishing coherent quasi-particle spectral weight at the Fermi level throughout k-space. The incoherence of the charge carriers, resulting from strong electron-lattice interactions and the accompanying orbital physics, offers a unifying explanation for the anomalous charge-carrier dynamics seen in transport, optics and electron spectroscopies. The stacking number N is the key factor for true metallic behaviour, as an intergrowth-driven breakdown of the polaronic domination to give a metal possessing a traditional Fermi surface is seen in this system.
More details from the publisher
Details from ORA
Details from ArXiV

Femtoscale magnetically induced lattice distortions in multiferroic TbMnO 3

Science 333:6047 (2011) 1273-1276

Authors:

HC Walker, F Fabrizi, L Paolasini, F De Bergevin, J Herrero-Martin, AT Boothroyd, D Prabhakaran, DF McMorrow

Abstract:

Magneto-electric multiferroics exemplified by TbMnO 3 possess both magnetic and ferroelectric long-range order. The magnetic order is mostly understood, whereas the nature of the ferroelectricity has remained more elusive. Competing models proposed to explain the ferroelectricity are associated respectively with charge transfer and ionic displacements. Exploiting the magneto-electric coupling, we used an electric field to produce a single magnetic domain state, and a magnetic field to induce ionic displacements. Under these conditions, interference between charge and magnetic x-ray scattering arose, encoding the amplitude and phase of the displacements. When combined with a theoretical analysis, our data allow us to resolve the ionic displacements at the femtoscale, and show that such displacements make a substantial contribution to the zero-field ferroelectric moment.
More details from the publisher

Dynamic fields in the partial magnetization plateau of Ca 3Co2O6

Journal of Physics Condensed Matter 23:30 (2011)

Authors:

PJ Baker, JS Lord, D Prabhakaran

Abstract:

Fluctuation dynamics in magnetization plateaus is a relatively poorly explored area in frustrated magnetism. Here we use muon spin relaxation to determine the fluctuation timescale and associated field distribution width in the partial magnetization plateau of Ca3Co2O6. The muon spin relaxation rate has a simple and characteristic field dependence which we model and, by fitting to the data at 15K, we extract a fluctuation timescale τ = 880(30)ps and a field distribution width Δ = 40.6(3)mT. Comparison with previous results on Ca3Co2O6 suggests that this fluctuation timescale can be associated with short-range, slowly fluctuating magnetic order. © 2011 IOP Publishing Ltd.
More details from the publisher

Temperature dependence of the vortex remanent state in high-Tc superconductors

Physical Review B - Condensed Matter and Materials Physics 83:21 (2011)

Authors:

R Ma, KH Chow, J Jung, D Prabhakaran, H Tadatomo, T Masui, S Tajima

Abstract:

Temperature and magnetic field dependence of the vortex penetration into a superconductor and the resulting trapped vortex field (the vortex remanent state) were investigated for Bi2Sr2CaCu2O 8+x (BSCCO) and YBa2Cu3O6+x (YBCO) single crystals and BSCCO thin films. The experiments revealed changes in the pinning regime (the magnitude and magnetic relaxation) of the trapped vortex field with an increasing temperature. The trapped vortex field, obtained by applying a constant magnetic field, exhibits a maximum at a certain temperature, that separates the partial vortex penetration regime at low temperatures from the complete vortex penetration state at higher temperatures. The corresponding vortex remanent states in these two regimes are characterized by two distinctly different relaxations, the logarithmic and the nonlogarithmic ones at temperatures below and above the maximum, respectively, for both BSCCO and YBCO. At temperatures close to Tc surface/geometric barrier affect the relaxation rates. © 2011 American Physical Society.
More details from the publisher

Erratum: Circularly polarized x rays as a probe of noncollinear magnetic order in multiferroic TbMnO3 (Physical Review Letters (2011) 106:23 (239902))

Physical Review Letters 106:23 (2011)

Authors:

F Fabrizi, HC Walker, L Paolasini, F De Bergevin, AT Boothroyd, D Prabhakaran, DF McMorrow
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • Current page 41
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet