Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Dharmalingam Prabhakaran

Researcher

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Synthesis and crystal growth
dharmalingam.prabhakaran@physics.ox.ac.uk
Telephone: 01865 (2)72270,01865 (2)72351,01865 (2)72341
Clarendon Laboratory, room 177,377,373
  • About
  • Publications

Effect of pressure on temperature-induced spin-state transition in La1-xSrxCoO3 single crystals

INTERNATIONAL CONFERENCE ON HIGH PRESSURE SCIENCE AND TECHNOLOGY, JOINT AIRAPT-22 AND HPCJ-50 215 (2010) ARTN 012040

Authors:

K Mydeen, P Mandal, CQ Jin, D Prabhakaran
More details from the publisher

Ultrafast Resonant Soft X-ray Scattering in Manganites: Direct Measurement of Time-dependent Orbital Order

Optica Publishing Group (2010) me48

Authors:

H Ehrke, RI Tobey, S Wall, SA Cavill, D Prabhakaran, AT Boothroyd, M Gensch, P Reutler, A Revcolevschi, SS Dhesi, A Cavalleri
More details from the publisher

Charge order, enhanced orbital moment, and absence of magnetic frustration in layered multiferroic LuFe2 O4

Physical Review B - Condensed Matter and Materials Physics 80:22 (2009)

Authors:

K Kuepper, M Raekers, C Taubitz, M Prinz, C Derks, M Neumann, AV Postnikov, FMF De Groot, C Piamonteze, D Prabhakaran, SJ Blundell

Abstract:

Electronic and magnetic properties of the charge ordered phase of LuFe2 O4 are investigated by means of x-ray spectroscopic and theoretical electronic structure approaches. LuFe2 O4 is a compound showing fascinating magnetoelectric coupling via charge ordering. Here, we identify the spin ground state of LuFe2 O4 in the charge ordered phase to be a 2:1 ferrimagnetic configuration, ruling out a frustrated magnetic state. An enhanced orbital moment may enhance the magnetoelectric coupling. Furthermore, we determine the densities of states and the corresponding correlation potentials by means of x-ray photoelectron and emission spectroscopies, as well as electronic structure calculations. © 2009 The American Physical Society.
More details from the publisher
More details

Nature of the magnetic order and origin of induced ferroelectricity in TbMnO3

Physical Review Letters 103:20 (2009)

Authors:

SB Wilkins, TR Forrest, TAW Beale, SR Bland, HC Walker, D Mannix, F Yakhou, D Prabhakaran, AT Boothroyd, JP Hill, PD Hatton, DF McMorrow

Abstract:

The magnetic structures which endow TbMnO3 with its multiferroic properties have been reassessed on the basis of a comprehensive soft x-ray resonant scattering (XRS) study. The selectivity of XRS facilitated separation of the various contributions (Mn L2 edge, Mn 3d moments; Tb M4 edge, Tb 4f moments), while its variation with azimuth provided information on the moment direction of distinct Fourier components. When the data are combined with a detailed group theory analysis, a new picture emerges of the ferroelectric transition at 28 K. Instead of being driven by the transition from a collinear to a noncollinear magnetic structure, as has previously been supposed, it is shown to occur between two noncollinear structures. © 2009 The American Physical Society.
More details from the publisher
More details
Details from ArXiV

High-resolution hard x-ray photoemission investigation of La 2-2xSr 1+2xMn 2O 7 (0.30≤x<0.50): Microscopic phase separation and surface electronic structure of a bilayer colossal magnetoresistance manganite

Physical Review B - Condensed Matter and Materials Physics 80:20 (2009)

Authors:

S De Jong, F Massee, Y Huang, M Gorgoi, F Schaefers, J Fink, AT Boothroyd, D Prabhakaran, JB Goedkoop, MS Golden

Abstract:

Photoemission data taken with hard x-ray radiation on cleaved single crystals of the bilayered, colossal magnetoresistant manganite La 2-2xSr 1+2xMn 2O 7 (LSMO) with 0.30≤x<0.50 are presented. Making use of the increased bulk sensitivity upon hard x-ray excitation it is shown that the core-level footprint of the electronic structure of the LSMO cleavage surface is identical to that of the bulk. Furthermore, by comparing the core-level shift of the different elements as a function of doping level x, it is shown that microscopic phase separation is unlikely to occur for this particular manganite well above the Curie temperature. © 2009 The American Physical Society.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 43
  • Page 44
  • Page 45
  • Page 46
  • Current page 47
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet