Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Dharmalingam Prabhakaran

Researcher

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Synthesis and crystal growth
dharmalingam.prabhakaran@physics.ox.ac.uk
Telephone: 01865 (2)72270,01865 (2)72351,01865 (2)72341
Clarendon Laboratory, room 177,377,373
  • About
  • Publications

Nonthermal Melting of Orbital Order in La1/2Sr3/2MnO4 by Coherent Excitation of a Mn-O Stretching Mode

ULTRAFAST PHENOMENA XVI 92 (2009) 182-184

Authors:

Raanan I Tobey, Dharmalingam Prabhakaran, Andrew T Boothroyd, Andrea Cavalleri
More details
More details from the publisher

Spin reorientation and glassy dynamics in La1.55Sr 0.45NiO4

Physical Review B - Condensed Matter and Materials Physics 78:18 (2008)

Authors:

SR Giblin, PG Freeman, K Hradil, D Prabhakaran, AT Boothroyd

Abstract:

The magnetism of charge-stripe-ordered La1.55Sr 0.45NiO4 was studied by a combination of neutron diffraction, muon-spin relaxation (μSR), and bulk susceptibility. Long-range magnetic ordering was observed at a lower temperature by μSR than by neutron diffraction, consistent with a glassy transition to the ordered phase. A second magnetic transition is detected by all techniques and is consistent with a spin reorientation. On cooling below TSR=42 K the spins reorientate from lying 32.9±0.6° away from the stripe direction at 70 K to 56.8±0.4° at 10 K. The magnetic order was observed by neutron diffraction to have both three-dimensional and two-dimensional (without any correlation along the c axis) characters. μSR measurements confirmed this and are consistent with a single magnetically ordered spin-stripe phase. The effects of checkerboard charge order on the ordered phase and the characteristics of the phase diagram of the spin reorientation in charge-ordered La2-xSrxNiO4 are commented on. © 2008 The American Physical Society.
More details from the publisher
More details

Strain-induced first-order orbital flip transition and coexistence of charge-orbital ordered phases in Pr0.5Ca0.5MnO3

Physical Review B - Condensed Matter and Materials Physics 78:17 (2008)

Authors:

PR Sagdeo, NP Lalla, AV Narlikar, D Prabhakaran, AT Boothroyd

Abstract:

Low-temperature transmission electron microscopy and x-ray diffraction (XRD) studies have been carried out on pellet and powder samples of Pr0.5 Ca0.5 MnO3. These studies have revealed appearance of a different type of charge-orbital ordered (COO) phase, resulting due to flipping of eg orbitals from d3 x2 - r2 / d3 y2 - r2 to d3 x2 - r2 / d3 z2 - r2 configuration. This orbital flip results in a changeover of the COO superlattice-ordering vector from (1/2,0,0) to (1/4,1/2,1/4) in the Pnma phase. This COO phase coexists with the conventional COO phase. Low-temperature XRD studies show that the COO phase appears only in pellet sample and not in the corresponding powder sample. The powder sample shows only conventional COO phase. Volume fractions of conventional and the other type COO phases in pellet sample of Pr0.5 Ca0.5 MnO3 is estimated to be ∼55% and 45%, respectively. The occurrence of orbital flip has been attributed to local strain building up in the pellet sample. The strain builds up during cooling because manganite has anisotropic thermal expansion coefficients. © 2008 The American Physical Society.
More details from the publisher
More details

Ultrafast electronic phase transition in La1/2Sr3/2MnO4 by coherent vibrational excitation: evidence for nonthermal melting of orbital order.

Phys Rev Lett 101:19 (2008) 197404

Authors:

RI Tobey, D Prabhakaran, AT Boothroyd, A Cavalleri

Abstract:

An ultrafast electronic phase transition, associated with melting of orbital order, is driven in La1/2Sr3/2MnO4 by selectively exciting the Mn-O stretching mode with femtosecond pulses at 16 microm wavelength. The energy coupled into this vibration is less than 1% of that necessary to induce the transition thermally. Nonthermal melting of this electronic phase originates from coherent lattice displacements comparable to the static Jahn-Teller distortion.
More details from the publisher
More details

Ordering of localized electronic states in multiferroic TbMnO3: A soft x-ray resonant scattering study

Journal of Physics Condensed Matter 20:42 (2008)

Authors:

TR Forrest, SR Bland, SB Wilkins, HC Walker, TAW Beale, PD Hatton, D Prabhakaran, AT Boothroyd, D Mannix, F Yakhou, DF McMorrow

Abstract:

Soft x-ray resonant scattering (XRS) has been used to observe directly, for the first time, the ordering of localized electronic states on both the Mn and the Tb sites in multiferroic TbMnO3. Large resonant enhancements of the x-ray scattering cross-section were observed when the incident photon energy was tuned to either the Mn L or Tb M edges which provide information on the Mn 3d and Tb 4f electronic states, respectively. The temperature dependence of the XRS signal establishes, in a model independent way, that in the high-temperature phase (28 K≤T≤42 K) the Mn 3d sublattice displays long-range order. The Tb 4f sublattices are found to order only on entering the combined ferroelectric/magnetic state below 28 K. Our results are discussed with respect to recent hard XRS experiments (sensitive to spatially extended orbitals) and neutron scattering. © 2008 IOP Publishing Ltd.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 46
  • Page 47
  • Page 48
  • Page 49
  • Current page 50
  • Page 51
  • Page 52
  • Page 53
  • Page 54
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet