Evidence from in vitro replication that O6-methylguanine can adopt multiple conformations.
Proceedings of the National Academy of Sciences of the United States of America 90:9 (1993) 3983-3987
Abstract:
The effect of O6-methylguanine (m6G) on replication, in a partially double-stranded defined 25-base oligonucleotide, has been studied under nonlimiting conditions of unmodified dNTPs and over an extended time period, using the Klenow fragment of Escherichia coli DNA polymerase I. The sequence surrounding m6G has flanking cytosines (C-m6G-C), and the initial steady-state kinetics have been reported. When the primer was annealed so that the first base to be replicated was m6G, replication was virtually complete in approximately 5 min, although the reaction appears biphasic. When annealed with a primer where thymine or cytosine is paired opposite template m6G, about half the molecules were replicated in the first 15 sec, and no significant further replication was seen over a 1-hr period. When m6G was dealkylated by DNA-O6-methylguanine-methyltransferase, replication was rapid with no blockage. These data suggest that there can be two (or more) conformations of m6G. In these studies the term syn refers to conformers interfering with base-pairing, whereas anti refers to those allowing such base-pairing. Previous physical studies by others indicate that syn- and anti-conformers of the methyl group relative to the N1 of guanine are possible. Here molecular modeling/computational studies are described, suggesting that syn- and anti-m6G can be of similar energy in DNA, and, therefore, these two conformers may explain the two types of species observed during in vitro replication. An alternative explanation could be the possibility that the different species may manifest differential interactions of m6G with Klenow fragment. These results may provide a rationale for why m6G lesions in vivo have been reported to be lethal as well as mutagenic.Further studies of the mixed acetals of nucleosides.
Biochimie 75:7 (1993) 511-515
Abstract:
We reported in 1988 on a new nucleoside modification reaction: the exocyclic amino groups of (d)adenosine and (d)cytidine react rapidly at ambient temperature with acetaldehyde and alcohols to give stable mixed acetals (N-ethylethoxy-acetal). NH2 + O = CH(CH3) + ROH-->NH-CH(CH3)-O-R + H2O. Here we report in detail on the occurrence of this reaction in very dilute aqueous solution (ie under biological conditions), on its mechanism and kinetics, on the mixed acetal formation with other aldehydes and other nucleic acid components, and on the question of whether these adducts are mutagenic.Both purified human 1,N6-ethenoadenine-binding protein and purified human 3-methyladenine-DNA glycosylase act on 1,N6-ethenoadenine and 3-methyladenine.
Proceedings of the National Academy of Sciences of the United States of America 89:20 (1992) 9386-9390
Abstract:
We previously described a protein, isolated from human tissues and cells, that bound to a defined double-stranded oligonucleotide containing a single site-specifically placed 1,N6-ethenoadenine. It was further demonstrated that this protein was a glycosylase and released 1,N6-ethenoadenine. We now find that this enzyme also releases 3-methyladenine from methylated DNA and that 3-methyladenine-DNA glycosylase behaves in the same manner, binding to the ethenoadenine-containing oligonucleotide and cleaving both ethenoadenine and 3-methyladenine from DNA containing these adducts. The rate and extent of glycosylase activities toward the two adducts are similar.Partial purification of a human DNA glycosylase acting on the cyclic carcinogen adduct 1,N6-ethenodeoxyadenosine.
Cancer research 52:5 (1992) 1377-1379
Abstract:
We previously reported that a variety of human cells and tissues contained a Mr35,000 DNA-binding protein which selectively recognized a single 1,N6-ethenoadenine in a defined 25-base double-stranded oligonucleotide (B. Rydberg et al., Proc. Natl. Acad. Sci. USA, 88: 6839-6842, 1991). We now demonstrate that incubation of the same duplex with 50-fold partially purified binding protein from human placenta results in release of the free 1,N6-ethenoadenine base, indicative of DNA glycosylase action. This enzyme activity appears unique in that it excises a cyclic adduct resulting from a known human carcinogen.Kinetics of extension of O6-methylguanine paired with cytosine or thymine in defined oligonucleotide sequences.
Biochemistry 30:49 (1991) 11595-11599