Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Picture of the remote entanglement experiment
Credit: Joseph Goodwin

Peter Drmota

Postdoctoral Research Assistant

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
peter.drmota@physics.ox.ac.uk
Clarendon Laboratory, room Old Library
UKRI Studentship
Researchgate
ORCID
  • About
  • Publications

Squeezing, trisqueezing, and quadsqueezing in a spin-oscillator system

(2024)

Authors:

O Băzăvan, S Saner, DJ Webb, EM Ainley, P Drmota, DP Nadlinger, G Araneda, DM Lucas, CJ Ballance, R Srinivas
More details from the publisher

Breaking the entangling gate speed limit for trapped-ion qubits using a phase-stable standing wave

Physical Review Letters American Physical Society 131:22 (2023) 220601

Authors:

Sebastian Saner, Oana Băzăvan, M Minder, Peter Drmota, DJ Webb, Gabriel Araneda Machuca, Raghavendra Srinivas, David M Lucas, Christopher J Ballance

Abstract:

All laser-driven entangling operations for trapped-ion qubits have hitherto been performed without control of the optical phase of the light field, which precludes independent tuning of the carrier and motional coupling. By placing 88Sr+ ions in a λ=674  nm standing wave, whose relative position is controlled to ≈λ/100, we suppress the carrier coupling by a factor of 18, while coherently enhancing the spin-motion coupling. We experimentally demonstrate that the off-resonant carrier coupling imposes a speed limit for conventional traveling-wave Mølmer-Sørensen gates; we use the standing wave to surpass this limit and achieve a gate duration of 15  μs, restricted by the available laser power.
More details from the publisher
Details from ORA
More details
More details

Entanglement-Enhanced Frequency Comparison of Two Optical Atomic Clocks

Institute of Electrical and Electronics Engineers (IEEE) 00 (2023) 1-1

Authors:

BC Nichol, R Srinivas, DP Nadlinger, P Drmota, D Main, G Araneda, CJ Ballance, DM Lucas
More details from the publisher

Standing-wave Mølmer-Sørensen gates on a quadrupole transition*

Morressier (2023)

Authors:

Oana Bazavan, Sebastian Saner, Donovan Webb, Raghavendra Srinivas, Gabriel Araneda, David Lucas, Chris Ballance, Peter Drmota
More details from the publisher

Breaking the entangling gate speed limit for trapped-ion qubits using a phase-stable standing wave

(2023)

Authors:

S Saner, O Băzăvan, M Minder, P Drmota, DJ Webb, G Araneda, R Srinivas, DM Lucas, CJ Ballance
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet