Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Picture of the remote entanglement experiment
Credit: Joseph Goodwin

Peter Drmota

Postdoctoral Research Assistant

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
peter.drmota@physics.ox.ac.uk
Clarendon Laboratory, room Old Library
UKRI Studentship
Researchgate
ORCID
  • About
  • Publications

Micromotion minimisation by synchronous detection of parametrically excited motion

(2021)

Authors:

DP Nadlinger, P Drmota, D Main, BC Nichol, G Araneda, R Srinivas, LJ Stephenson, CJ Ballance, DM Lucas
More details from the publisher
Details from ArXiV

High-rate high-fidelity entanglement of qubits across an elementary quantum network

Physical Review Letters American Physical Society 124:11 (2020) 110501

Authors:

Laurent Stephenson, David Nadlinger, Bethan Nichol, Peter Drmota, Timothy Ballance, Keshav Thirumalai, Joseph Goodwin, David Lucas, Christopher Ballance

Abstract:

We demonstrate remote entanglement of trapped-ion qubits via a quantum-optical fiber link with fidelity and rate approaching those of local operations. Two 88Sr+ qubits are entangled via the polarization degree of freedom of two spontaneously emitted 422 nm photons which are coupled by high-numerical-aperture lenses into single-mode optical fibers and interfere on a beam splitter. A novel geometry allows high-efficiency photon collection while maintaining unit fidelity for ion-photon entanglement. We generate heralded Bell pairs with fidelity 94% at an average rate 182 s−1 (success probability 2.18×10−4).

More details from the publisher
Details from ORA
More details
More details

High-rate, high-fidelity entanglement of qubits across an elementary quantum network

(2019)

Authors:

LJ Stephenson, DP Nadlinger, BC Nichol, S An, P Drmota, TG Ballance, K Thirumalai, JF Goodwin, DM Lucas, CJ Ballance
More details from the publisher
Details from ArXiV

Investigation of valence band reconstruction methods for attosecond streaking data from surfaces.

Optics express 27:7 (2019) 9394-9402

Authors:

P Drmota, D Greening, JP Marangos, JWG Tisch

Abstract:

We analyze simulated streaked valence band photoemission with atomic streaking theory-based reconstruction methods to investigate the differences between atomic gas-phase streaking and valence band surface streaking. The careful distinction between atomic and surface streaking is a prerequisite to justify the application of atomic streaking theory-based reconstruction methods to surface streaking measurements. We show that neglecting the band structure underestimates the width of reconstructed photoelectron wavepackets, consistent with the Fourier transform limit of the band spectrum. We find that a fit of Gaussian wavepackets within the description of atomic streaking is adequate to a limited extent. Systematic errors that depend on the near-infrared skin depth, an inherently surface-specific property, are present in temporal widths of wavepackets reconstructed with atomic streaking theory-based methods.
More details from the publisher
More details
More details

Networking Trapped-ion Quantum Computers

Optica Publishing Group (2019) s2d.1

Authors:

CJ Ballance, LJ Stephenson, DP Nadlinger, BC Nichol, S An, JF Goodwin, P Drmota, DM Lucas
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet