Experimental Demonstration of Quantum State Multi-meter and One-qubit Fingerprinting in a Single Quantum Device
ArXiv quant-ph/0411180 (2004)
Abstract:
We experimentally demonstrate in NMR a quantum interferometric multi-meter for extracting certain properties of unknown quantum states without resource to quantum tomography. It can perform direct state determinations, eigenvalue/eigenvector estimations, purity tests of a quantum system, as well as the overlap of any two unknown quantum states. Using the same device, we also demonstrate one-qubit quantum fingerprinting.Multipartite entanglement in quantum spin chains
ArXiv quant-ph/0411080 (2004)
Abstract:
We study the occurrence of multipartite entanglement in spin chains. We show that certain genuine multipartite entangled states, namely W states, can be obtained as ground states of simple XX type ferromagnetic spin chains in a transverse magnetic field, for any number of sites. Moreover, multipartite entanglement is proven to exist even at finite temperatures. A transition from a product state to a multipartite entangled state occurs when decreasing the magnetic field to a critical value. Adiabatic passage through this point can thus lead to the generation of multipartite entanglement.Perfect Transfer of Arbitrary States in Quantum Spin Networks
ArXiv quant-ph/0411020 (2004)
Abstract:
We propose a class of qubit networks that admit perfect state transfer of any two-dimensional quantum state in a fixed period of time. We further show that such networks can distribute arbitrary entangled states between two distant parties, and can, by using such systems in parallel, transmit the higher dimensional systems states across the network. Unlike many other schemes for quantum computation and communication, these networks do not require qubit couplings to be switched on and off. When restricted to $N$-qubit spin networks of identical qubit couplings, we show that $2\log_3 N$ is the maximal perfect communication distance for hypercube geometries. Moreover, if one allows fixed but different couplings between the qubits then perfect state transfer can be achieved over arbitrarily long distances in a linear chain. This paper expands and extends the work done in PRL 92, 187902.Perfect Transfer of Arbitrary States in Quantum Spin Networks
(2004)