Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

Evolution of the disc radii during outburst of x-ray binaries as infered from thermal emission

International Conference Recent Advances in Natural Language Processing, RANLP (2008)

Authors:

C Cabanac, R Fender, E Körding, R Dunn

Abstract:

Compact object displays drastic spectral and timing changing from the beginning to the end of an outburst, showing the different efficiencies of accretion processes. Black hole binaries hence exhibit schematically two different states in X-ray spectra: The first dominated by a thermal component and the second by a hard powerlaw shape like. Whereas the hard component is often attributed to the emission of a radiatively inefficient corona, the thermal component is interpreted as the emission of the optically thick accretion disc. The commonly accepted picture suggests that the observed transition between hard and soft states is associated by a drop in the accretion efficiency of the thermal component by a recession of the internal disc radius in hard states. However, recent studies based on relativistically broadened iron line and the thermal component strength analysis would tend to show the presence of the disc in the vicinity of the horizon. By a reanalysis of archive spectra where thermal emission is present, we tracked the values of the disc radii during outbursts among several sources. Indeed, whereas a constant inner radius would imply that the disc luminosity should monotonically depends on the temperature, we show that this relationship seems to deviate at the lowest luminosities. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

High energy astrophysics with the next generation of radio astronomy facilities

International Conference Recent Advances in Natural Language Processing, RANLP (2008)

Abstract:

High energy astrophysics has made good use of combined high energy (X-ray, g-ray) and radio observations to uncover connections between outbursts, accretion, particle acceleration and kinetic feedback to the local ambient medium. In the field of microquasars the connections have been particularly important. However, radio astronomy has been relying on essentially the same facilities for the past ∼ 25 years, whereas high-energy astrophysics, in particular space-based research, has had a series of newer and more powerful missions. In the next fifteen years this imbalance is set to be redressed, with a whole familiy of new radio facilities under development en route to the Square Kilometre Array (SKA) in the 2020s. In this brief review I will summarize these future prospects for radio astronomy, and focus on possibly the most exciting of the new facilities to be built in the next decade, the Low Frequency Array LOFAR, and its uses in high energy astrophysics. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial- ShareAlike Licence.

High energy astrophysics with the next generation of radio astronomy facilities

International Conference Recent Advances in Natural Language Processing, RANLP (2008)

Abstract:

High energy astrophysics has made good use of combined high energy (X-ray, g-ray) and radio observations to uncover connections between outbursts, accretion, particle acceleration and kinetic feedback to the local ambient medium. In the field of microquasars the connections have been particularly important. However, radio astronomy has been relying on essentially the same facilities for the past ∼ 25 years, whereas high-energy astrophysics, in particular space-based research, has had a series of newer and more powerful missions. In the next fifteen years this imbalance is set to be redressed, with a whole familiy of new radio facilities under development en route to the Square Kilometre Array (SKA) in the 2020s. In this brief review I will summarize these future prospects for radio astronomy, and focus on possibly the most exciting of the new facilities to be built in the next decade, the Low Frequency Array LOFAR, and its uses in high energy astrophysics. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial- ShareAlike Licence.

Internal shocks model for microquasar jets

International Conference Recent Advances in Natural Language Processing, RANLP (2008)

Authors:

O Jamil, R Fender, C Kaiser

Abstract:

We present an internal shocks model to investigate particle acceleration and radiation production in microquasar jets. The jet is modelled with discrete ejecta at various time intervals. These ejecta (or 'shells') may have different properties including the bulk velocity. Faster shells can catch up and collide with the slower ones, thus giving rise to shocks. The particles are accelerated inside the shocked plasma. Each collision results in a new shell, which may take part in any subsequent collisions as well as radiate due to synchrotron radiation. Almost continuous energy dissipation along the jet can be obtained with a large number of shell collisions. We investigate the spectral energy distribution of such jets as well as the physical significance of various parameters (e.g. the time interval between ejections and the shell size). © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

Measuring the accretion rate and kinetic luminosity functions of supermassive black holes

Monthly Notices of the Royal Astronomical Society 383:1 (2008) 277-288

Authors:

EG Körding, S Jester, R Fender

Abstract:

We derive accretion rate functions (ARFs) and kinetic luminosity functions (KLFs) for jet-launching supermassive black holes. The accretion rate as well as the kinetic power of an active galaxy is estimated from the radio emission of the jet. For compact low-power jets, we use the core radio emission while the jet power of high-power radio-loud quasars is estimated using the extended low-frequency emission to avoid beaming effects. We find that at low luminosities the ARF derived from the radio emission is in agreement with the measured bolometric luminosity function (BLF) of active galactic nucleus (AGN), i.e. all low-luminosity AGN launch strong jets. We present a simple model, inspired by the analogy between X-ray binaries (XRBs) and AGN, that can reproduce both the measured ARF of jet-emitting sources as well as the BLF. The model suggests that the break in power-law slope of the BLF is due to the inefficient accretion of strongly sub-Eddington sources. As our accretion measure is based on the jet power it also allows us to calculate the KLF and therefore the total kinetic power injected by jets into the ambient medium. We compare this with the kinetic power output from supernova remnants (SNRs) and XRBs, and determine its cosmological evolution. © 2007 The Authors.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 140
  • Page 141
  • Page 142
  • Page 143
  • Current page 144
  • Page 145
  • Page 146
  • Page 147
  • Page 148
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet